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Abstract
Here we analyse the effects of the error involved in manually placing “mark-up”

points in active shape models. We demonstrate that the magnitudes of eigenvalues re-
tained in principal components analysis (PCA) are increased by point-placement error.
We present a revised covariance matrix that reduces or completely removes the effects of
point-placement error. We find results for “predicted” placement errors that are in excel-
lent agreement with the “set-up” parameters of simulations for an elliptical shape. We
find that increasing point-placement error in the original “training set” increases point-to-
line and point-to-point errors in ASM image searches and adversely affects convergence.

1 Introduction
Active shape models (ASMs) and active appearance models (AAMs) [1, 2, 3, 4] have been
used extensively in image processing to carry out the segmentation of features from (espe-
cially medical) images (see Fig. 1). However, the effects of inaccuracy in the placement of
“mark-up points” used in ASMs and AAMs have not been considered in great detail. Here
we use “measurement models” [5] in order to analyse and account for such sources of error.

2 Method
A 2D shape may be represented by a vector zi j of size 2n, where n is the number of mark-
up points. The index i refers to a specific image in the training sample of size N, and the
index j refers to a specific observer (or equivalently to a specific replication of the mark-up
points by the same observer). The “mean shape” over the N images in our “sample” for
observer/replication j is given by z j = 1

N ∑N
i=1 zi j. We define additionally: δzi j = zi j− z j.

The covariance matrix is given by

Cov(z′j1 ,z j2) =
1

N−1

N

∑
i=1

δz′i j1 δzi j2 . (1)

The lth eigenvalue of Eq. (1) is denoted λl and its (normalised) eigenvector is denoted by ûl .
(The symbol ′ indicates the transpose of a vector.) A new shape is represented by

znew = z+
M

∑
l=1

bl ûl . (2)
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Figure 1: Mark-up points on a panoramic dental radiograph as part of the OSTEODENT
project (see Ref. [4]). It was remarked anecdotally during the process of “marking-up” these
images by clinicians that placement of points parallel to strong edges was much more difficult
than placement of these points perpendicular to these edges, e.g., vertically at the left- and
rightmost points of the jaw. However, the effects of placement errors on the application and
use of ASMs (e.g., in image searches) is not well-understood.

The b-coefficients are (scalar) coefficients and M is the number of the eigenvectors used in
PCA in descending order of λl . Constraints on these coefficients are that |bl | ≤ 3

√
λl so that

we never stray too far away from a “sensible solution.” The cumulative amount of variability

AM of M of the eigenvalues/vectors is given by AM = ∑M
l=1 λl

∑2n
l=1 λl

.

A “measurement model” [5] for the mark-up points for a given image i and observer/
replication j,

zi j = ηi + εi j , (3)

where ηi indicates the “true” value and εi j is the “placement” or “measurement” error. (η
and ε are also vectors of size 2n.) Errors ε are assumed uncorrelated with the “true” values
for the points η and they are also uncorrelated between different observers/replications, i.e.,
for different values of j. (Here there are no “systematic biases” dependent on observer.)
From these discussions, we see now that

Cov(z′j1 ,z j2) = Cov(η ′,η)+Cov(ε ′j1 ,ε j2)δ j1, j2 , (4)

where δ j1, j2 is equal to 1 if j1 = j2 and it is equal to 0 otherwise. We use Eq. (4) in
order to form an “error-corrected” version of the covariance matrix that should reduce or
remove the effects of point-placement or “measurement” error. For the simplest case of two
observers/replications, we see that Cov(z′1,z2) = Cov(z′2,z1) = Cov(η ′,η); which ought to
be correct in the asymptotic limit N→ ∞. However, this is clearly impossible in a practical
study and so we note that we might have problems with small sample sizes leading to a
(marginally) non-symmetric covariance matrix. We propose that a reasonable approximation
to might be given by

Cov(η ′,η) =
Cov(z′1,z2)+Cov(z′2,z1)

2
. (5)

We estimate placement errors by finding Cov(ε ′j,ε j) = Cov(z′j,z j)−Cov(η ′,η). The vari-
ance at each mark-up point is given by the diagonal of this matrix and so the predicted error
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No Placement Error With Placement Error “Error-Corrected” Matrix of Eq. (5)
1 0.125 0.131 0.125
2 0.059 0.063 0.060
3 0.009 0.023 0.010
4 0.008 0.020 0.009
5 0.002 0.018 0.002
6 0.000 0.018 0.002

Table 1: The first six eigenvalues for the elliptic shape with n = 20 and N = 1000.

(i.e., the standard deviation) is found readily. An estimate of the reliability for a specific
observer/replication is given by κ = Var(η)/Var(z). A value of κ near to zero indicates low
reliability and a value near to 1 indicates good reliability.

An elliptical shape was used in the simulation study. The basic equations are given by

x(θ) = acos(θ)cos(φ)−bsin(θ)sin(φ)
y(θ) = acos(θ)sin(φ)+bsin(θ)cos(φ) . (6)

The coefficients a and b were both set to a value of 0.4 (standard deviation=0.1), and φ
was set to zero (standard deviation=0.025 rads.). Two sets of mark-up points were gener-
ated automatically with equal amounts of uncorrelated random (Gaussian) error added to the
placement of the points. Points on the left and the right of the shape had more random error
in the y-direction than those near to x=0. Points near to x=0 had more random error in the
x-direction than those at the left and right edges. Mark-up points were placed on the cortical
bone edges of panoramic mandible images [4] as part of the OSTEODENT study by two ex-
perts (separately) using a custom-written graphical user interface (again, see Fig. 1 above).
N = 133 images were used in this study and there were n=84 mark-up points in total.

3 Results
Results for the first six eigenvalues for the elliptic shape for the case of n = 20 (d.o.f. =
2×20) and N = 1000 are shown in Table 1. We see from this table that the eigenvalues for
the cases with random placement error compare less well to a “reference” case with zero
placement error than the corrected case of Eq. (5). We see that the effect of placement error
is to increase the eigenvalues. The cumulative amount of variability AM is shown in Fig. 1
for the elliptic shape with n = 20 (d.o.f. = 2×20) and N = 1000, and also for the OSTEO-
DENT data. We see that the effects of placement error (magnitude 0.08 in both the x- and
y-directions separately) for the simulated elliptical shape is to reduce the cumulative amount
of variability AM at every value of M when compared to the “reference” case with no place-
ment error. The curve for the “corrected” covariance matrix of Eq. (5) lies quite close to the
“reference” case with zero placement error. The results for the corrected covariance matrix
of Eq. (5) for the OSTEODENT data are higher than those curves for the two independent
observers in Fig. 2b. These results indicate that the corrected covariance matrix of Eq. (5) is
probably going some way to removing the effects of point-placement error.

The mean shapes for the “elliptical” simulations (n = 20, N = 1000) and the OSTEO-
DENT data are shown in Fig. 3. We see that the mean shapes are circles for the “elliptical”
simulations and that the values for a and b are near to their “true” values of 0.4, as expected.
The average predicted errors (both in the x- and y-directions separately) were 0.080(±0.001),
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(a) (b)
Figure 2: Cumulative variability AM for the (a) simulated elliptic shapes (n = 20, N = 1000)
and (b) the OSTEODENT data

(a) (b)
Figure 3: Mean shape and predicted placement errors (standard deviations) for the (a) simu-
lated elliptic shapes (n = 20, N = 1000) and (b) OSTEODENT data (expert 1)

which also compares well to the “true” value of 0.08 in these simulations. The predicted er-
rors in the y-direction also increased near to the right and left of the figure and those in the
x-direction at the top and the bottom, also as expected from the set-up of this simulation.
Results for the predicted errors for the OSTEODENT study indicated that errors were great-
est along the direction of shape edges (e.g., at the left- and rightmost points of the jaw) and
also at the “mental foramen” [4]. Also, expert 1 had a mean(s.d.) predicted placement error
of 74(17) pixels and expert 2 had a mean(s.d.) error of 59(22) pixels for the OSTEODENT
data. The result for the reliability for the simulated elliptical shapes was κ = 0.44 (n = 20,
N = 1000; average placement error in the x- and y-directions = 0.08). Results for the relia-
bilities of experts 1 & 2 for the OSTEODENT data were κ = 0.786 and 0.845, respectively.

A simple ASM image search code was written for the elliptical simulated shapes with
n = 40 and N = 500. Initial results for the point-to-line (P-2-L) and point-to-point (P-2-P)
errors and the percentage (%C) of successfully converged ASM image searches (to 3 d.p.s.
in max. 200 iterations) for “new” shapes under the same conditions as for the “training set”
are shown in Table 2. The “reference” case with zero placement error demonstrated the
smallest amount of error, and convergence was found to be very good. (400 “test” cases
were used in order to determine these quantities.) The cases with error added in the “training
set” showed increased point-to-line and point-to-point errors and also poorer convergence
properties. Interestingly, this became more apparent for increased numbers of eigenvectors
retained, M. The predicted mark-up points from ASM image searches were more prone to
“wander” along the edge of the image boundary for larger values of M. We suspect that this
is because these eigenvalues/vectors for larger M corresponded purely to random “noise”
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M = 10 M = 20 M = 40
P-2-L P-2-P %C P-2-L P-2-P %C P-2-L P-2-P %C

“Reference” 0.027(8) 0.10(3) 99% 0.026(8) 0.10(3) 100% 0. 026(8) 0.10(3) 99%
Error=0.1 0.033(7) 0.10(2) 99% 0.044(7) 0.16(3) 91% 0.042(6) 0.25(4) 79%
Error=0.2 0.036(7) 0.10(3) 100% 0.048(7) 0.16(3) 95% 0.046(6) 0.25(3) 76%
“Corrected” 0.037(7) 0.12(2) 99% 0.046(8) 0.17(4) 94% 0.044(6) 0.21(4) 80%

Table 2: Mean point-to-line (P-2-L) and point-to-point (P-2-P) errors evaluated over 400
ASM image searches for the elliptic shapes with n = 40 and N = 500. The percentage of suc-
cessfully converged searches (%C; 3 d.p.s in 200 iterations) is shown also. (“Reference”=no
placement-error in the underlying shape model; Error=0.1,0.2 has some placement-error;
“Corrected” uses Eq. (5). Errors w.r.t. the last decimal place shown are in brackets.)

from the placement error in the underlying shape model. Finally, results for the point-to-
point distance for the “corrected” covariance matrix of Eq. (5) (arguably) improved slightly
on those results with random placement-error added (error=0.1,0.2) for M = 40 in these very
initial studies, although not for lower M.

4 Conclusions
Measurement models allow us to predict where placement errors are smallest and “reliabil-
ity” is greatest geographically on a (e.g., mean) shape. This information might be used to
to decide where to extract biometric parameters or which set of mark-up points one ought
to employ, where more than one set of mark-up points is available. Placement error in the
“training set” for the shape model was seen to increase point-to-line and point-to-point errors
in ASM image searches and to adversely affect convergence. A revised covariance matrix
that reduces or removes the effects of placement error was tested: cumulative variability
curves were shifted upwards nearer to the “reference” case with zero error; and, a slight re-
duction in point-to-point errors for larger values of M was seen in ASM image searches in
very initial tests. However, more testing is needed to establish firmly whether the “corrected”
covariance matrix is a useful and practical method for feature segmentation via ASMs.
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