CHEN, DENTON, ZWIGGELAAR: BREAST TISSUE MODELLING AND CLASSIFICATION 1

Modelling Breast Tissue in Mammograms
for Mammographic Risk Assessment

Zhili Chen!:3 'Department of Computer Science
zzc09@aber.ac.uk Aberystwyth University
Aberystwyth, UK
Erika Denton? 2Department of Breast Imaging
Erika.denton@nnuh.nhs.uk Norfolk and Norwich University Hospital
Norwich, UK
Reyer Zwiggelaar! 3Faculty of Information and Control Engineering
rrz@aber.ac.uk Shenyang Jianzhu University,

Shenyang, China

Abstract

We propose to model breast tissue in mammograms covering both density and tissue
patterns. The breast tissue density modelling is based on the global density distribution
of the breast region. We segment the whole breast region into a number of uniform
density sub-regions and construct an overall density model of the breast using the relative
proportions of these sub-regions. The breast tissue pattern modelling is based on the local
texture appearance, for which we use a texton based approach. The breast tissue models
generated in this way can be used for mammographic risk assessment. The evaluation is
based on the MIAS database. The classification results show a high agreement with the
consensus of three experts according to four BIRADS categories.

1 Introduction

Mammographic density and parenchymal patterns are both strong predictive indicators of
breast cancer risk, which corresponds to greylevel and texture information, respectively. A
variety of methods have been developed for breast tissue characterisation [1, 3, 5, 8, 9].
A number of publications are related to breast tissue segmentation, where the breast tissue
region is segmented into a number of sub-regions corresponding to different densities or
appearances based on greylevel and texture information [3, 5]. The segmentation results can
be used for mammographic risk assessment. On the other hand, texture representation of
breast tissue has been investigated and has played a significant role in mammographic risk
assessment [8, 9]. Recently, the adoption of local information to represent texture images
has become a trend in texture classification. Numerous approaches to texture classification
based on local texture information have been developed [4, 7, 11]. A number of publications
have applied local texture information to mammographic risk assessment [1, 9].

We model breast tissue in mammograms incorporating global greylevel information and
local texture information. The modelling process consists of three steps: (1) breast tissue
extraction; (2) breast tissue density modelling; and (3) breast tissue pattern modelling.
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Figure 1: (a) Original mammogram; (b) breast region segmentation; (c) breast tissue filter-
ing; and (d) breast tissue segmentation: the breast tissue density corresponding to the four
colour sub-regions increases in the order of blue, light blue, green, and red.

2 Methodology

As a preprocessing step we segment the breast region [2]. An original Medio-Lateral Oblique
(MLO) mammogram and the segmentation result are shown in Figure 1(a) and 1(b), respec-
tively. Following breast region segmentation, the breast region is filtered with an adaptive
local window filter defined in [3] in order to eliminate the sensitivity to noise and small
intensity inhomogeneity effects. The filtered result is shown in Figure 1(c).

To model breast tissue, a set of training images are first needed to learn the greylevel
and texture information for a specific mammographic database. A greylevel histogram is
generated over all the training images, which is used to describe the overall distribution of
the breast tissue density. The modified Fuzzy C-Means (MFCM) algorithm [3] is used to
segment the breast region into N, density sub-regions. The segmentation result (N; = 4) of
Figure 1(c) is shown in Figure 1(d). The relative areas of the density sub-regions are used to
represent the breast tissue density composition.

Breast tissue patterns are modelled using a texton based approach [9, 11] (as shown in
Figure 2). Firstly, the original image patches (for which neither filtering nor normalisation is
performed) are extracted at each breast tissue pixel from all the training images. The image
patches we use are N X N square local windows. The patches entirely located within the
breast area are aggregated to form a local tissue appearance space. We rearrange the pixels
within the patches in row order to form N? dimensional vectors. The K-Means clustering
algorithm is used to partition these vetors into N; clusters. The N; cluster centres are consid-
ered as the breast tissue textons. Subsequently, the breast tissue patterns are modelled with
the frequency histogram of the N; textons. Specifically, for a given mammographic image,
image patches are first extracted, each image patch is then labelled with the closest breast
tissue texton. The occurrence of each texton labelling is calculated to generate the breast
tissue texton histogram, which is L; normalised to avoid the bias caused by the breast size.

To generate a breast tissue model incorporating both breast tissue density and patterns,
we combine the relative proportions of the density sub-regions and the texton histogram to
form an n (n = Ny + N;) dimensional feature space. Consequently, breast tissue is represented
based on the joint distribution of breast tissue density and local breast tissue appearance.
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Figure 2: Breast tissue pattern modelling: the three texton histograms correspond to the top
mammograms with the breast density increasing from left to right.

3 Results and Discussion

To test the capability of the developed breast tissue models for mammographic risk assess-
ment, the Mammographic Images Analysis Society (MIAS) database [10] has been used.
This database contains 322 MLO mammograms from 161 women. Three experts classified
321 available mammograms (mdb29511 was excluded for historical reasons) according to the
Breast Imaging Reporting and Data System (BIRADS) standard [6]. The consensus was
considered as the classification ground truth.

We used 5 different training sets, for each of which we randomly selected 40 mammo-
grams from the MIAS database (we did not make an implicit assumption that mammograms
in each class have the same appearance). The breast region was segmented into 8 density
sub-regions. The original spatial resolution of the images is 50um x 50um per pixel. For
memory and efficiency reasons, we downsampled the full resolution to 800um x 800t m per
pixel at the stage of breast tissue texton learning. The image patch size was 3 x 3. 160 tex-
tons were learned from the training set. The number of features (N; +N; = 8 + 160) in the
breast tissue model was 168 in total.

A leave-one-woman-out evaluation methodology was used for the classification. When
classifying one mammogram, the other mammogram from the same woman was excluded
from the training samples to avoid bias (left and right mammograms from the same woman
might have similar tissue features). We used a k-Nearest Neighbours (kNN) based classi-
fier. A value of k = 8 was selected, but small variations in k produced similar results. The
similarity between two models was measured using the y? distribution comparison, where
X2 (x,y) = 055" (x; —i)?/(xi +yi). To prevent the similarity measurement being dom-
inated by the features scaled in a range of larger values, all features in the models were
normalised between 0 and 1 (other normalisation methods have been tried giving similar re-
sults). The performance was improved after normalisation. Initially, a classic KNN was used,
but when equal classes were indicated, we used a weighted kNN approach. In addition, the
traditional kNN classifier weights all the features equally, taking no account of their discrim-
inating capability. To solve this problem, we used the sequential forward selection (SFS)
algorithm to select a set of discriminative features. For different training sets, on average
40 features were retained. Among these features, a subset of top-ranking features played an
important role in the classification (which contained most of the density ralated features),
while the remaining features slightly increased the performance.

Table 1 shows the classification results based on 321 mammograms in the MIAS database
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Automatic
BIRADS | I 1 1I IV | CA
i 78 9 0 0 |90%
§ I 7 8 9 0 | 84%
= 111 0 16 73 5 | 78%
v 1 1 8 27| 73%

Table 1: Confusion matrix of breast density classification, with overall classification accu-
racy (CA) equal to 83%.

according to the four BIRADS classes. The classification accuracy (CA) for the four-class
classification is 83%, and increases to 92% when considering the two-class (i.e. low and
high density) classification. When analysing each BIRADS class, the correct classification
percentages are 90% for BIRADS I, 84% for BIRADS II, 78% for BIRADS III, and 73%
for BIRADS 1V, respectively. The relatively poor performance for BIRADS IV might be
explained by the lower number of samples for that class. Moreover, it should be noted
that only two mammograms were mis-classified by more than one BIRADS class. Similar
classfication results were obtained when using different training sets. The average results
were 81 + 2% for four classes and 90 2% for two classes.

We have compared the results with some closely related work which also used the BI-
RADS criteria for the classification. Petroudi et al. [9] modelled mammographic parenchy-
mal patterns with a statistical distribution of clustered filter responses of the Maximum Re-
sponse 8 (MRS) filter bank, and obtained a classification accuracy of 76% for the Oxford
Database. Oliver et al. [8] used a set of morphological and texture features. They obtained
a correct percentage of 77% using the combination of the kNN classifier and the SFS algo-
rithm, which increased to 86% when the Bayesian combination of the kNN classifier and
the C4.5 decision tree was used. He et al. [5] developed a number of mammographic image
segmentation methods for mammographic risk assessment, and the classification accuracy
they recently obtained was 75%. A number of these publications (e.g. [5, 8]) used the same
database and the same ground truth, so a direct comparison is possible.

At the breast tissue density modelling stage, the breast tissue density was described by
the relative areas of the segmented density sub-regions to the whole breast area. A range
of other properties of the dense tissue sub-regions related to shape measurement (e.g. Euler
number and solidity) can be investigated to link the BIRADS criteria and morphological
information of dense tissue. At the breast tissue pattern modelling stage, we used reduced-
resolution mammographic images, where useful small texture information might be lost.
The multi-resolution effects on the modelling will be investigated. In addition, there are
two important parameters in the developed breast tissue models: the number of segmented
density sub-regions, and the number of breast tissue textons, respectively. They were set
to 8 and 160 in our experiments. We have experimented with different parameter settings.
From a thorough evalution, the selected parameters performed better, and small variations
in this setting provided similar results. We used a leave-one-woman-out methodology in our
experiments, where the distribution of training samples in the four classes was unbalanced.
BIRADS IV was not well represented due to a small proportion in the training set, which
might explain the lower performance for this class. The unbalanced training sample problem
will be further investigated to optimise the classification.
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4 Conclusions

We have presented a breast tissue modelling method for mammographic risk assessment,
which combined density and tissue patterns based on global greylevel and local texture infor-
mation. The breast tissue density based segmentation showed realistic results corresponding
to different tissue densities. The breast tissue patterns were represented by frequency his-
tograms of breast tissue textons. The developed breast tissue models have been used to
discriminate mammographic images in the MIAS database according to the BIRADS stan-
dard. A high agreement has been achieved with the consensus classification from three ex-
perts. The classification results are comparable with the state of the art. This work provides
an overall framework for modelling breast tissue in mammographic images. As future work,
we will incorporate different types of breast tissue features to generate more integrated breast
tissue models. Different methods for breast tissue representation will be investigated on the
basis of this framework. In addition, feature selection and multiple classifier combination
will be used to improve the classification.
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