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Abstract

Whole-brain structural connectivity matrices extracted from Diffusion Weighted Im-
ages (DWI) provide a systematic way of representing anatomical brain networks. They
are equivalent to weighted graphs that encode both the topology of the network as well
as the strength of connection between each pair of region of interest (ROIs). Here, we
exploit their hierarchical organization to infer probability of connection between pairs of
ROIs. Firstly, we extract hierarchical graphs that best fit the data and we sample across
them with a Markov Chain Monte Carlo (MCMC) algorithm to produce a consensus
probability map of whether or not there is a connection. We apply our technique in a
gender classification paradigm and we explore its effectiveness under different parcella-
tion scenarios. Our results demonstrate that the proposed methodology improves classi-
fication when connectivity matrices are based on parcellations that do not confound their
hierarchical structure.

1 Introduction
Anatomical brain connectivity refers to the existence of axonal connections between two
brain areas. With the advent of Diffusion Weighted Imaging (DWI) neuronal connections
can be extracted in vivo and characterized non-invasively. Within tissue with an oriented
structure, such as white matter, the diffusion of water is hindered in the direction perpendic-
ular to the fiber tracts. There is an inherent complexity in exploiting this directional informa-
tion of each voxel and reproducing the neuronal pathways. These limitations originate from
the fact that DWI is a macroscopic technique utilised to infer microscopic tissue properties.
Currently, there are several techniques to reconstruct fiber tracts [3]. Among the most suc-
cessful is probabilistic tractography, which utilises a probabilistic framework to propagate
local probability density functions on parameters in the diffusion model [3]. However, in
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Figure 1: The original 83-ROIs parcellation as well as the four sub-parcellations based on an
indicative/approximate number of 500, 400, 300 and 200 voxels per region, respectively.

probabilistic tractography a number of connections emerge that may or may not represent
real fibers.

Here, we exploit the hierarchical organization of brain networks to redefine whole-
brain connectivity matrices. We propose inferring hierarchical structures from the observed
anatomical connectivity with a technique that has been developed recently and has been
tested in both biological and social networks [2]. This technique uses statistical inference
combined with a MCMC sampling algorithm to derive hierarchical models, also called den-
drograms, with probability proportional to the likelihood that they generate the observed
network. This model allows the assignment of a probability for each connection that reflects
the confidence in its existence based on the whole-brain network topology and the assump-
tion that it is hierarchically organized. We use this methodology to analyze whole-brain
connectivity matrices derived from a number of different sub-parcellations (scales). We ap-
plied our approach in the paradigm of gender classification. Leave-one-out cross-validation
is used to compare the performance of classification with and without the application of the
hierarchical algorithm.

2 Methods

2.1 Pre-processing and Extraction of Brain Networks

FSL was the main tool for pre-processing of DWI . This involved eddy current correction and
brain extraction. Bias correction was applied to T1 and B0 images to improve the robustness
of the non-rigid registration tools. In order to extract anatomical brain networks from DWI,
ROIs are defined based on the fusion of 83-ROIs atlas based segmentation and soft-tissue
segmentation. This facilitated the extraction of ROIs that are anatomically sensible and they
are located in gray-matter. Segmentations were transformed to diffusion space with non-rigid
registration. This procedure has been described in details in previous work [4]. Subsequently,
connections between regions are identified using a standard probabilistic algorithm available
as part of FSL [1]. However, we estimate the local diffusion anisotropy by determining the
diffusive transfer between voxels using the orientation distribution function (ODF) [4].

2.2 Sub-Parcellation of ROIs

To sub-parcellate the 83 segmented ROIs we transformed the segmentations from diffusion
space into standard (MNI) space using affine registration. We counted the voxels within each
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Figure 2: Structural connectivity matrices that correspond to the parcellations in Figure 1.

region and across subjects and we predefined the number of sub-areas based on an indica-
tive (approximate) number of voxels per area. Each area was sub-divided into a number of
regions, according to the average number of voxels across subjects divided by the indicative
size and rounded to the closest integer. Subsequently, we extracted the boundary voxels of
each ROI with white matter and we applied eigen-decomposition to the covariance matrix
to define the best fit plane for the boundary voxels. The coordinates of each voxel in the
ROI was projected on the first eigen-vector so that we could sub-divide them based on their
projected position. Finally, they were subdivided into the predefined number of sub-regions
so that each sub-region has equal number of voxels (±1). This way guarantees that all sub-
regions within the original ROI are surrounded with relatively equal number of white matter
voxels. Therefore, tracts between each sub-region and the rest ROIs can be identified. An
example of the subparcellation for a subject is shown in Fig. 1.

2.3 From Brain Graphs to Hierarchical Random Graphs
In networks with hierarchical organization, nodes are subdivided into groups that are further
subdivided into more groups and so forth over multiple scales. In brain networks, this im-
plies that connections are dense within groups of areas and sparse between them. Clauset
et al. showed that this property alone is able to explain both qualitatively and quantitatively
a number of topological and statistical properties of the original graph, such as their degree
distribution, clustering coefficient and so on [2]. Their approach offers two major strengths:
Firstly, it can capture both clusters of nodes, ’assortative’, and disassociated nodes, ’disas-
sortative’ structures, as well as arbitrary mixtures of the two. Secondly, it does not depend
on one hierarchical model but it generates a series of hierarchical models, dendrograms, and
samples along them to create a consensus dendrogram that expresses the network’s topology.

Let us represent a structural brain network as a graph G with n nodes. The observed
network data can be fitted to a random binary dendrogram based on a Monte Carlo sampling
algorithm over a maximum-likelihood approach. A binary dendrogram has n leaves corre-
sponding to the n nodes of the graph G, and each of the n−1 internal nodes have exactly two
descendants. Each internal node r is associated with a probability pr. Under a maximum-
likelihood approach the probability pr is estimated as the fraction of edges between the two
sub-trees:

p̄r =
Er

LrRr
(1)

where Er are the edges between left and right sub-trees and Lr and Rr are the number of nodes
in left and right sub-tree, respectively. The likelihood of the dendrogram at this maximum is
given below:

L(D) = ∏
r∈D

[
p̄r

p̄r(1− p̄r)1−p̄r

]LrRr

. (2)
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Figure 3: ROC curves for gender classification.

The overall likelihood of the dendrogram reflects how well the dendrogram fits the graph data
under the assumption that the original graph has hierarchical organization. Here we used the
logarithm of the likelihood to avoid numerical instabilities due to very small numbers:

logL(D) =−∑
r∈D

LrRrh(p̄r) (3)

where h is the Gibbs-Shannon entropy function: h(p) =−p log p− (1− p) log(1− p). Note
that dendrograms with high probability are those that partition the vertices into groups that
are either very well interconnected or disconnected. Subsequently, the MCMC method is
used to sample dendrograms and accepts them according to the Metropolis-Hasting rules [2].
The Markov chain consists of re-arrangements of subtrees of the dendrogram by choosing a
random node and exchanging any of its children with its parent’s child.

Once MCMC reaches equilibrium, dendrograms can be sampled at regular interval from
the Markov chain. For each sampled dendrogram a probability connectivity matrix can be
created with values that reflect the probability of each pair of nodes/areas to be connected.
The probability between each pair of nodes i and j is equal to the probability pr of the lowest
common ancestor of the nodes i and j in the sampled dendrogram. A consensus probability
matrix is estimated by averaging these matrices across dendrogram samples.

3 Results
We used diffusion weighted images (DWI) that have been acquired from 20 normal vol-
unteers (10 males, 10 females) with the following imaging parameters: 64 non-collinear
directions, in 72 slices, slice thickness 2mm, FOV 224mm, matrix 128x128, voxel size
1.75x1.75x2mm3, b value 1000 s/mm2 (Philips 3Tesla). Based on the original 83-ROIs
segmentation, we created four sub-parcellations with an indicative size of region of 500,
400, 300 and 200 voxels per area. This resulted in four segmentations with 243, 295, 381
and 564 regions, respectively, Fig. 1. We run the adapted probabilistic tractography [4],
which estimated the connectional strength between each pair of regions and provided with
the corresponding connectivity matrices for each sub-parcellation, Fig. 2. For each subject
and each parcellation, we run the MCMC method until the algorithm reached equilibrium.
Once the MCMC has reach equilibrium, the probability that there is a connection between
each pair of nodes is estimated and it is averaged across a predefined number of dendrograms
(5000). These new connectivity matrices define the probability that two nodes are connected.
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We performed gender classification by separating subjects into two groups according to their
gender and averaging the mean-subject probability connectivity matrices. We used leave-
one-out cross validation to classify the subjects based on the normalised Euclidean distance
between the average probability maps of each group and the leave-one-out subject. If the
subject’s distance from the male group is higher than its distance from the female group, we
classify the subject as female and vice-versa. To demonstrate the efficiency of our method-
ology we also performed classification with the original connectivity matrices and the same
classifier. In Fig. 3, the Receiver Operating Characteristic (ROC) curve is shown for each of
the sub-parcellations with and without MCMC. The Area Under the Curve (AUC) is a mea-
sure of the optimum performance of the classifier. Our results suggest that age classification
is not successful based on the original parcellation alone neither with the application of the
MCMC algorithm or without, Fig. 3 . However, when we analyzed the sub-parcelated con-
nectivity matrices with the MCMC approach, we could classify the subjects with up to 82%
classification rate. Gender classification based on the original connectivity matrices was un-
successful for all the different sub-parcellation scenarios. Since MCMC has as input binary
matrices (one when a connection exist, zero for the absence of connection), we also clas-
sified the binarised version of the original connectivity matrices. There was no significant
difference in performance between the original weighted graphs and the binarised versions,
Fig. 3.

4 Discussion and Conclusions
We applied our approach successfully in a gender classification paradigm of 20 subjects
with diffusion data in 64 directions, Fig. 3. Our results showed that although classification
performance did not improve in the case of the original 83-ROIs parcellation, it was signifi-
cantly enhanced in all other sub-parcellations. This suggests that hierarchical organization of
anatomical networks derived from DWI can be confounded by the uneven sub-parcellation
in 83-ROIs with size that varies from 20 to over 8000 voxels per region. On the other hand,
MCMC applied on connectivity matrices derived from the sub-parcellation has a significant
improvement in classification over the original connectivity matrices, Fig. 3. These results
demonstrate the potential of the MCMC to identify missing links and false connections in
whole-brain structural connectivity data.
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