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Abstract
We propose a fast algorithm for the identification of localised brain regions from

medical images that discriminate between two groups of individuals. The method is
based on a combination of penalised regression and a data resampling procedure. We
apply this approach to both MRI and PET images for the classification of subjects with
Alzheimer’s disease and mild cognitive impairment. We show that the voxels selected
by the algorithm form connected brain regions which are well known to be affected by
Alzheimer’s disease. A linear statistical classifier trained on the selected voxels achieves
cross-validated classification results that are comparable to those obtained by current
state-of-the-art methodologies.

1 Introduction
Early and accurate diagnosis of Alzheimer’s disease (AD) is crucial for a timely and opti-
mal treatment of patients. Neuroimaging techniques, such as MRI or PET, can help identify
diagnostic biomarkers [4] and even predict later development of the disease. A comparison
of supervised and unsupervised techniques for biomarker extraction has recently been pub-
lished [3]. While supervised biomarkers encode prior knowledge about the disease and brain
anatomy, such as hippocampal volume, shape or atrophy [2], unsupervised biomarkers do
not require any a priori knowledge of structures that are involved in the disease process. In
this paper we consider the latter approach and propose a statistical model for the automatic
extraction of brain regions that can potentially be used as biomarkers. One of the key chal-
lenges of unsupervised biomarker extraction is given by the fact that the number of voxels
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that need to be processed and tested is very large, so that many classical feature selection
techniques will not scale up well or provide reliable results.

We propose a simple and computationally efficient approach for the unsupervised se-
lection of discriminative voxels. The approach relies on a penalised regression model that
encourages sparsity in the regression coefficients, thus performing voxel selection. This so-
lution is combined with a data resampling scheme that provides a measure of discriminative
importance for each individual voxel.

2 Methods
Let X be a n× p matrix composed of n brain images of independent subjects each with p
voxels. We assume that the n individuals have clinical labels D (diseased) and H (healthy
controls). The class label for subject i is represented by a binary variable yi, such that yi = 1
if individual i is in class D and yi = 0 otherwise. We also assume that the vector y is mean
centred and the columns of X , x j, where j = 1, . . . , p, have zero mean and constant variance.

We use the n images to identify localised groups of voxels whose intensities are highly
discriminative between the two classes. We achieve the desired voxel selection by means
of penalised regression. We treat the class indicator y as a response variable in a linear
regression model whose predictors are given by the voxel intensities. Assuming a least
squares loss function, we aim to estimate the linear regression coefficients β = (β1, . . . ,βp)
such that they satisfy two main properties: (a) only the coefficients corresponding to most
discriminative voxels are non-zero, thus yielding a sparse estimate β̂ , which is achieved by
introducing an l1 penalty [7], and (b) the non-zero coefficients of correlated voxels should
be smoothed towards a common value to allow for the selection of voxels in groups, which
is obtained by imposing an l2 penalty on the regression coefficients [8]. Accordingly, the
estimates are found by minimising the following penalised least squares problem

argmin
β

{
‖y−Xβκ‖2

2 +λ ‖βκ‖1 + µ ‖βκ‖2
2

}
(1)

where λ > 0 and µ > 0 are regularisation parameters introduced for the l1 and l2 penalties
respectively, and where the scaling factor κ = (1 + µ)−1 corrects for the double shrinkage
caused by applying both penalties. By setting µ to infinity, we reduce the number of free
parameters down to only one, λ , whilst still maintaining the grouping effect. This leads
to a very computationally cheap estimation algorithm. The optimal β coefficients can be
computed one element at a time by applying a simple soft-thresholding function,

β̂ j = sign(x′jy)
(
| x′jy | −

λ
2

)

+
j = 1, . . . , p (2)

where (α)+ is defined as max(0,α).
The regularisation parameter λ in Equation (2) controls the amount of sparsity, and there-

fore determines a set S containing the selected voxels. When λ is exactly zero, no penalty
is imposed and all p voxels enter the set S. As λ increases away from zero, less voxels are
retained. At its maximum value λmax, no voxel is selected and S becomes the empty set. A
common approach to model selection in sparse regression involves tuning λ , for instance by
cross-validating the prediction error obtained for all values of λ ∈ [0,λmax], and then choos-
ing the value of λ that provides the smallest cross-validated error. However, the selection
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of the optimal λ might suffer from sampling errors, in the sense that a different λ , hence a
different sparsity pattern, might arise from an independent data set.

To select highly discriminative voxels that are more robust against sampling errors, we
adopt a data resampling scheme that has been proposed for sparse predictive modelling [6].
This procedure aims to obtain a measure of voxel importance by repeatedly fitting the sparse
regression model on random subsets of the data set and keeping track of voxels that are con-
sistently associated to non-zero regression coefficients. Specifically, for λ ∈ [λmin,λmax], we
draw B random sub-samples with replacement. For each sample we obtain a sparse estimate

β̂
(b)

(λ ), where b = 1, . . . ,B. For each estimate, we determine which voxels have non-zero
regression coefficients by using an indicator variable v(b)

j (λ ) which is equal to 1 if the co-
efficient corresponding to voxel x j is non-zero, or 0 otherwise. Using all B sub-samples, a
measure of voxel importance is finally computed by estimating the selection probabilities

P j(λ ) =
1
B

B

∑
b=1

v(b)
j (λ ) j = 1, . . . , p (3)

Rather than tuning the regularisation parameter λ , we search for a set of voxels with high
probability over a range [λmin,λmax]. The upper bound λmax is determined to be the lowest
value of λ that results in empty set S. The lower bound λmin is determined using a search
procedure. The final set of voxels to be included in S is obtained by choosing a threshold π
on the selection probabilities, hence we denote by S(λmin,π). The optimal λmin and π are
chosen to minimise a measure of cross-validated classification error.

3 Experiment and Results

3.1 Data Sets
The proposed method was applied to MRI and FDG-PET data obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database1. T1-weighted 1.5 T baseline MRI scans
were available for 838 subjects: 198 AD patients, 409 subjects with mild cognitive impair-
ment (MCI) and 231 cognitively normal elderly subjects (CN). Within the MCI group, 168
subjects have so far been diagnosed with AD and are denoted by pMCI (progressive MCI),
whereas the remaining subjects are denoted by sMCI (stable MCI). The baseline MR images
were aligned with the MNI152 brain template using a coarse non-rigid registration regu-
larised by a 10mm B-spline control-point grid. Brain extraction was performed based on
automated tissue classification using SMP52. Image intensities were normalised to the tem-
plate using linear regression prior to performing Gaussian smoothing with a 4mm FWHM
Gaussian kernel. PET images were available for 287 subjects: 71 AD, 62 pMCI, 85 sMCI,
and 69 CN. Each PET image was converted to a 30-minute static and affinely aligned with
the corresponding native-space MRI. The non-linear transformation parameters estimated to
map the MR images to the MNI template were then applied to the MR-space PET images
using a trilinear interpolation. These images were smoothed to a common isotropic spatial
resolution, normalised and resampled to the higher resolution of the MRI. 1,650,857 voxel
intensities in MRI and PET images were used to perform voxel selection with the proposed
method after correcting for age and gender using a linear regression model.

1www.loni.ucla.edu/ADNI
2www.fil.ion.ucl.ac.uk/spm
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Figure 1: (A) Two-dimensional projections of training data points observed on the selected
voxels (MRI data) show that AD and CN subjects are linearly separable. (B) Transversal
slices showing the selected voxels (in yellow) and insets displaying selection probabilities
for AD vs CN in MRI and PET data.

3.2 Classification results
Six independent classification experiments were performed, whereby we compare two groups
in each experiment: AD vs CN, pMCI vs CN, and pMCI vs sMCI, using both MRI and PET
data. For each experiment, voxel selection was carried out according to the procedure de-
scribed in Section 2. Selection of the most discriminative voxels leads to linear separability
of the pairs of subject groups in training sets as illustrated in Figure 1(A). Since the groups
are linearly separable we can use linear discriminant analysis (LDA) to assess the discrimi-
native power of the selected set of voxels, S(λmin,π). LDA does not require any parameter
setting, therefore there are only two parameters λmin and π to be optimised.

The optimal parameters λ ∗min and π∗ were obtained by 10-fold cross-validation of three
performance measures: accuracy, sensitivity and specificity. These performance measures
are reported in Table 1. Using MRI data, the accuracy index is between 69.7% (for pMCI vs
sMCI) and 86.2% (for AD vs CN). Remarkably, only less than 400 voxels were required to
achieve these high classification accuracies. Slightly superior classification performance is
achieved when using PET data, and requires from 1178 to 2020 voxels. The accuracy results
reported in Table 1 were assessed for the statistical significance using permutation testing.
All accuracy measures were found to be highly significant (p-values < 0.001).

Voxels in S(λ ∗min,π
∗) from the AD vs CN comparison using both datasets are visualised

in yellow in Figure 1(B). As an illustration, the insets show the whole range of selection
probabilities P j(λ ∗min) for all voxels, without any thresholding. The selected voxels form

Table 1: Classification performance measures in percentages - accuracy (acc), sensitivity
(sen) and specificity (spe) - using LDA based on selected voxels (vox).

MRI PET
Comparisons vox acc sen spe vox acc sen spe
AD vs CN 221 86.2 82.8 89.2 2020 87.1 87.3 87.0
pMCI vs CN 386 81.7 76.8 85.3 1178 84.0 80.6 87.0
pMCI vs sMCI 288 69.7 68.5 70.5 1463 70.1 72.6 68.2
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connected regions in hippocampus and amygdala in the MRI data and in posterior cingulate
gyrus and superior parietal gyrus in the PET data, in agreement with previous findings [1, 4].

4 Discussion and Conclusion
A method based on a combination of penalised regression and data resampling has been pro-
posed here. The approach enables computationally efficient selection of highly discrimina-
tive voxels between two groups of medical images. The methodology has been applied to the
sparse classification of ADNI images. The classification performance compares favourably
to results of state-of-the-art studies (for example [5]) and a recent meta-analysis [3] of clas-
sification methods on ADNI data. While our results for AD vs CN classification are com-
parable to the best results reported in this study, we achieve better results for pMCI vs CN
classification and for the clinically most interesting discrimination of pMCI from sMCI sub-
jects. Our findings are fully consistent with patterns of AD atrophy and hypometabolism
demonstrated in previous studies [1, 4].
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