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Abstract

We present a method based on graphical models for the localization of corresponding
anatomical landmarks in CT images of multiple patients for which only limited labeled
training data is available. Our method mobilizes anatomical spatial relationships learnt
from labeled training images in order to improve dense matching using weak landmark
appearance descriptors. In this study, we report results for localization of 22 different
anatomical landmarks in 20 unseen lung cancer patients and different types of anatomi-
cal constraints (none, box-range, Gaussian). The average registration error over all land-
marks improved from 18.8 voxels (37.6mm) of the raw landmark descriptors to 4.2 vox-
els (8.4 mm) using the anatomical constraints.

1 Introduction

Inter-subject matching and registration of whole-body oncology CT images is a challeng-
ing problem due to the intrinsically high variability of normal subjects and of pathological
structures. The motivation for our work is to develop algorithms for improved inter-subject
registration in whole-body PET/CT oncology applications. In this work, we report meth-
ods to match corresponding structures of multiple patients for which there is only a limited
labeled training dataset. Our approach is based on a parts-based graphical model.

Conventional approaches to determining correspondences in medical imaging typically
rely on registration methods. However, despite considerable advances in deformable regis-
tration, there still do not exist reliable methods for aligning whole-body images of differ-
ent subjects. The performance of inter-subject registration could be improved by informa-
tive priors that capture the wide variability of structures. Active shape/appearance models
(ASM/AAM) have addressed this problem [2]. However, several authors have drawn atten-
tion to the limitations of such global models when applied to clinical images in which there
are significant local abnormalities [1, 7]. Graphical Models , developed in computer vision,
offer an alternative approach to modeling flexible objects, one which does not impose ex-
plicit global priors, and which is generally considered to be potentially more robust to local
abnormalities than global AAMs.
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In medical image analysis, the attractive properties of graphical models have attracted
attention in spine labeling [3, 6]. However, whole-body matching involves considerably
more complex anatomical variability. Here, we report a method that is capable of localizing
a broad range of structures of interest to a clinician, including both skeletal and soft tissues

2 Methods

Our method is based on the Pictorial Structure model [4, 5], which we summarize here.

2.1 Pictorial Structure Representation

All landmarks share the same representation, which comprises a unary energy term for part
appearance and a set of pair-wise terms for spatial compatibility. It takes the form of a
tree-structured undirected graphical model G with nodes v;,v; representing the landmarks.

P(L|1,0) (Hp (I]L,u;)® H p(li,1; | Cij)> ey

v,-,ijG

In this equation, the first product term represents the cost of each landmark v; at location /;,
given the quality of match of landmark appearance model u; to the image /. The second term
is the compatibility cost of connected pairs of landmarks assuming conditional independence
(i.e., anatomical constraints, represented by ¢; ;). This equation can be rewritten as an energy
minimization problem by taking its negative logarithm. L is the vector of locations /; assigned
to all landmarks v;, ® are the model parameters learnt from the data. « is a normalization
constant, selected empirically for each type of spatial constraint and fixed for all parts (for
box-range constraints: o = 1, for Gaussian constraints: & = 20).

Local Appearance. We model local tissue appearance in terms of local rectangular
image patches around a candidate landmarks with a fixed scale h=12 voxels. Patches are
projected onto a set of n = 17 bases that includes the mean template and the top n = 16 prin-
cipal eigen-patches obtained from ground truth patches for each landmark. Additional pos-
itive examples were generated from the hand-annotated patches by random rotations within
anatomically plausible ranges. Negative examples of non-landmark tissue ("background")
are sampled from unlabelled tissue from a spherical region of interest within the segmented
body outline. The variability of part appearance is represented by the distribution of the co-
efficients, u; ~ N(M,X) for each part i, where M, X are diagonal matrices. up; ~ N(M,X) is
the model for the local "background".

Pair-wise Anatomical Constraints. Pair-wise spatial compatibility terms G;;(x;,x;)
penalise part placements outside of the degree of anatomical variability exhibited within the
training database The functional form of this spatial model is approximated as a distribution
over Z ik = lix — Ljx (the relative position vector of two parts i, j in training patient k). We

evaluate: no constraints; box-range constraints P (/; ‘ l j) ~U (minﬁj7k,maxﬁj7k>; (search

within a bounding cube); and Gaussian models P (/; | lj)~N (Z ks Mis Z,-) with diagonal and
full covariance. The Gaussian terms are truncated at 3 standard deviations.

2.2 Learning Pictorial Structure Parameters
The parameters of the model are learnt as maximum likelihood (ML) estimates from the

training data D. The connectivity of graph G is obtained based on an estimated n-by-n
matrix Q of edge compatibilities, Q;; (G | D) ~ Yi1,eD —logP (1;,1; | cij)-
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(a) Top femur head (b) Carina (¢) Aortic arch (d) Th12 vertebra (e) Top of kidney

Figure 1: Example landmark posterior probability maps. Top: Coronal, Bottom: Sagittal
views. Images show a 16x16x16 cm region centered at the ground-truth location. Bright
colors correspond to high probability landmark placements ( 1). Dark colors correspond to
low probability landmark placements ( 0). White box indicates patch scale h = 12 vox.

A set of edges connecting all parts in a tree is obtained by finding the minimum spanning
tree of the complete graph such that the sum of edge costs is minimum. Intuitively, this can
be seen as searching for edges with the most compact ("rigid") pair-wise constraints.

The pair-wise spatial model is fitted by directly calculating the MLE estimate for the
vector Z ik (.e. the mean and the diagonal or full covariance matrix for the Gaussian or
bounding cube for the box-range model). The appearance model parameters are obtained by
direct calculation of the sample mean and variance of the feature coefficients.

2.3 Matching Pictorial Structure to New Image

To find the best placements for the parts in a new image, we apply the appearance models to
the whole image using a sliding window approach. The log-likelihood ratios are combined
using a Naive Bayes classifier to obtain the posterior probability for each landmark and
sliding window placements. For computational reasons, the dense descriptors were evaluated
in a cube-shaped region of interest centered around the ground-truth landmark placement
([81 x 81 x 81 voxels]).

Min-sum belief propagation algorithm is used for an exact, globally optimal fitting using
the (dense) appearance posterior probability maps and the pair-wise compatibility terms.
Pair-wise terms are evaluated using the fast generalized Distance transforms [4] and fast
min/max filters.

3 Data and Results

To date, our database comprises 83 lung cancer PET/CT cases (here, randomly split into 63
training and 20 unseen test images). Contrast-enhanced, diagnostic-quality CT scans of the
torso were acquired using Siemens Biograph 6 and re-sampled to 2mm isotropic resolution.
22 clinical landmarks were selected by an expert radiologist with 20 years experience,
according to their utility as anatomical reference points for whole-body PET/CT. Ground-
truth landmark positions were annotated by a non-expert reader, who followed interactive
guidance by the expert. The expert subsequently validated a subset of the annotations, in-
cluding a) All placements flagged as uncertain or abnormal b) All annotations where the
non-expert disagreed with another non-expert c) All 30% of randomly selected patients.
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Figure 2: Anatomical constraints. Colored shapes show valid constraint ranges, overlaid
on one training patient (black lines). Blue and green points represent the training and test
points respectively, plotted in the local coordinates of the neighboring landmarks. Labels
correspond to landmarks 1 - 22 (Table 1)

Performance was assessed in terms of the robustness to misclassification and landmark
registration accuracy with different spatial constraint models. Localization accuracy was
measured in terms of the mean RMS error. Robustness was measured as the proportion of
failed detections, defined as parts placed above 10 voxels from the ground truth landmark
location (Table 1).

4 Discussion and Conclusion

We aim to establish correspondence for a limited set of clinical anatomical landmarks which
are guaranteed to be present and localizable in most clinical oncology images. Our method
can compensate for weak appearance descriptors with a high level of false positives and can
disambiguate repeated self similar structures by mobilizing relations between landmarks in
the image.

Our experiments show that all types of anatomical constraints improve registration com-
pared to using the appearance descriptors on their own. Localization of most landmarks
improved significantly, as evidenced by the reduction of average Mean RMS error from 18.8
voxels down to 4.2 voxels and the reduction in misclassifications from 48% down to 8%.
Gaussian constraints consistently outperform box-range constraints. However, we saw no
improvement on average from using full over diagonal covariance, which suggests the Gaus-
sian distributions may be a wrong model for some relations.

Some landmarks remain relative poorly localized. These include bottom sternum, a
highly variable structure with ambiguous ground-truth placements and the center of blad-
der, an intrinsically poorly localizable structure, due to variable fullness and appearance of
any contrast agent. Moreover, in coccyx and top of kidney, high variability of both appear-
ance and spatial relations hinders more accurate localization. Finally, Th12 vertebra cannot
be accurately localized with the current model as the available constraints are too broad to
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Table 1: A. Landmark registration accuracy. The table shows mean RMS error from
the ground-truth location. Lower error means more accurate localization. B. Landmark
detection robustness. The table shows failure rate (% detections above 10 voxel RMS).
Lower failure rate means more reliable localization. Results shown for 22 landmarks and
four constraint types (none, box-range, diagonal and full Gauss).

A) Avg. RMS Error B) Misclassification rate
[Voxels] [% Failed detections]

No Box Diag Full No Box Diag Full

1 C2 vertebra 274 8.0 1.9 19 75 20 0 0

2 C7 vertebra 11.3 49 25 23 40 5 0 0

3  topof the sternum 163 5.2 3.1 28 45 15 0 5

4 top right lung 157 32 36 37 40 0 0 0

5 top left lung 3.1 3.1 3.0 29 0 0 0 0

6 aortic arch 129 49 41 4.0 35 5 0 0

7 carina 2277 23 24 23 40 0 0 0
8

low sternum (ribs) 28.8 11.4 6.6 6.2 95 50 15 10
9 low sternum (tip) 26.3 12.6 9.1 84 80 50 35 30
10 Th12 vertebra 179 7.5 57 6.0 80 40 25 25
11 top right kidney 37.0 10.2 46 49 75 35 15 20
12 bottomright kidney 6.7 2.6 28 29 10 0 0 0
13 top left kidney 328 7.2 6.5 6.5 80 25 20 20

14  bottom left kidney 15.0 2.8 3.6 3.7 30 5 10 5
15 L5 vertebra 196 6.0 5.0 5.1 70 25 20 20
16 right illiac crest 1577 49 39 38 30 10 5 0
17 left illiac crest 10.8 3.3 4.0 3.9 20 0 0 0
18 right head of femur 9.8 2.1 22 22 20 0 0 0
19  left head of femur 44 2.8 24 26 5 0 0 0
20 symphysis 196 3.9 33 34 50 0 0 0
21 0s coccygeum 15.1 49 41 49 35 15 10 15
22 center of bladder  43.7 17.0 8.6 86 95 80 40 30

Average 188 5.9 42 4.2 48 17 9 8

disambiguate from unlabeled L1 and Th11 vertebra. Overall, the Gaussian model appears
better suited than box-range. However, it introduces a certain bias to "population mean" and
box constraints may be more suited if a better appearance descriptors are available. We used
an ad-hoc generative appearance descriptor and didn’t attempt to optimize the parameters
(anisotropic patch scale, number of features etc.), which we leave for future work. The per-
formance achieved to date in our experiments is also limited by the spatial resolution of the
down-sampled data as well as the variability in the ground-truth annotations, particularly for
the intrinsically less well localized landmarks such as the top of the lung. Moreover, here
we use only one tree-structured model to cover all the landmarks. Locally optimized graph
structure may provide improved spatial constraining to a particular landmark of interest.
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