
PETRIE et al.: BINNING WITHOUT A MODEL FOR CONE-BEAM CT 1

Binning Without a Model for Cone-beam CT

Tracy Petrie1

scstp@leeds.ac.uk

Derek Magee1

D.R.Magee@leeds.ac.uk

Jonathan Sykes2

Jonathan.Sykes@leedsth.nhs.uk

1 School of Computing
University of Leeds
Leeds, LS2 9JT, UK

2 Medical Physics and Engineering
Leeds Teaching Hospitals Trust
St James’s Hospital
Leeds, LS9 7TF, UK

Abstract

We present the first results of a new technique to bin Cone Beam projections without
imposing any motion model. Such a technique is required for studying motion in re-
gions of the body, such as the pelvis, where motion exists and is unpredictable. All mo-
tion information is obtained directly from the projections and the binning is performed
through a type of best first search through the graph of possible complete assignments.
Simplifying assumptions coupled with loss-less dimensional reduction using Principal
Component Analysis, make the method tractable.

1 Introduction
Cone-beam CT (CBCT) is frequently used in image-guided radiotherapy (IGRT) to verify
patient position and the validity of the treatment plan with respect to the planning CT. Ap-
proximately 660 radiographs are typically acquired during a two minute scan and a standard
filtered backprojection algorithm [1] is used to reconstruct a volume. This volume can then
be rigidly registered with the planning CT to evaluate changes in the treatment area and po-
tential misalignments. Such evaluations are needed to dynamically adjust the treatment to
correctly irradiate the target tissue and avoid healthy tissue. A critical issue with this process
is the introduction of blur due to the long acquisition time. This blur makes it difficult for
clinicians to assess alignment and see changes in tissues over the course of the treatment
plan. Several approaches to mitigating this problem have been proposed or implemented
but most rely on some form of radiograph, or projection, binning. Usually, some form of
model is used to guide this binning and most often this is a breathing model where the res-
piratory motion is divided into phases and projections are then binned by phase (see [4][3]).
Projections are matched to phases in many different ways: measuring respiration directly,
estimating it from diaphragm detection in the radiographs, estimating it from external cam-
era views of the patient, etc. An inherent limitation is that without a model, these methods
fail. Few approaches have attempted binning outside of the lung region.

Our approach is to attempt to bin projections without any model at all. We extend our
previous work [2] which implements an exhaustive search of possible binning assignments.
One of the requirements of that method is a two-pass protocol. In this paper we remove
the two-pass protocol change and replace the exhaustive search with a stochastic search.
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Removing the protocol change allows our ideas to potentially work with existing CBCT
configurations and, indeed, with existing data for retroactive studies in the future. These
studies could be used to better understand tumour motion in many parts of the body that are
currently not studied. We show early results with only two bins but demonstrate on synthetic
and phantom data that both periodic motion and non-periodic motion can be estimated with
visible and measureable improvements

(a) (b) (c) (d) (e)

Figure 1: ROI images from synthetic model with motion in three dimensions. (a) Normal
reconstruction (b) ideal bin 1 (c) ideal bin 2 (d) estimated bin 1 (e) estimated bin2.

(a) (b) (c) (d) (e)

Figure 2: ROI images from QUASAR phantom animated with simulated single shift motion.
(a) Normal reconstruction (b) ideal bin 1 (c) ideal bin 2 (d) estimated bin 1 (e) estimated
bin2.

2 Methods and Materials
Our method poses bin assignment as a search problem. It involves grouping projections
under the assumption of binning similarity in temporally adjacent projections, constructing
reprojections to fill in data gaps, recasting reconstruction as an averaging process of indi-
vidual backprojections, reducing the backprojection size by clipping to a region of interest,
and further reducing the size through the use of principal component analysis. Computing
reconstructions and fitness metrics in eigenspace decreases computational cost, but limits us
to metrics that have meaning in both eigenspace and the original space. We demonstrate
promising results by combining two such metrics.

Bucketing: the likelihood of adjacent projections belonging to the same bin is high
when binning into two bins. We group projections into one-second buckets which reduces
our binning task to 120 items, each containing between five and six projections, instead of
660.

Scoring: To assess the fitness of a given assignment, two volumes are reconstructed
based on a hypothesised binning and evaluated. At the voxel level, correctly binned re-
constructions should, on average, be different from each other reflecting the fact that they
represent the two states of the moving tissue. Globally, however, the reconstructions should
be similar in terms of greylevel distribution (as they are of roughly the same material). The
latter criteria is necesasry as it is possible to reconstruct two highly different volumes due
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to one containing mainly light voxels and the other containing dark voxels. This type of
difference we avoid by minimising the global difference while maximising the voxel differ-
ences. The difference between the greyscale means (dmean = V̄1− V̄2) of the two volumes is
assumed to be Gaussian with zero mean (ie. decreases with increasing dmean). We estimate
the variance of the Gaussian by sampling reconstructions from our search space. We multi-
ply this probability by the sum of squared differences of the two binned volumes to obtain
our fitness score (score = G(d|0,θ)× SSD(V1,V2)). We also, optionally, add a penalising
term if too many buckets are assigned to the same bin. If we know that we are imaging a
region of the body which is likely to have periodic motion, we can make a simple guess at
the period and this is sufficient to help the search process without requiring a precise model
of the pattern.

Searching: Even with the bucketing reduction, 2120 is still too large to search exhaus-
tively. We implemented a Best-N-First method that takes N candidate assignments (of buck-
ets to bins), and generates child assignments by flipping each of the individual bucket assign-
ments and evaluating the result. The best N assignments which are better than the parent’s
score are kept then the best N assignments out of all the children generated are kept. Parents
are added to a retired list and on each iteration, new children are vetted for uniqueness among
their peers and the retired list. The process terminates when fewer than N total new children
are generated.

Regions of Interest (ROIs): Reconstruction volumes are large and mostly contain in-
formation we don’t need from a binning standpoint. What we’re really interested in is the
motion that occurs in the region labelled in the planning CT as the "planning treatment vol-
ume". We simulate this ROI in our experiments with cylindrical regions but nothing prevents
the use of oddly shaped planning volumes. We use these ROIs in two ways: to generate 2D
masks of the projections by projecting the ROIs onto a virtual detector using the same ge-
ometry as the Synergy machine, and using them directly as 3D masks.

Reprojections: A significant problem in reconstruction is the introduction of artefacts.
Two sources of artefacts that impact us directly are motion artefacts and missing projection
artefacts. When we bin projections, reconstructing one bin means all the projections be-
longing to other bins are missing. This creates severe artefacts in the form of streaks and
misshapen structures. Conversely, retaining all the projections introduces the same kinds
of artefacts if there is motion, which the whole effort is predicated on. We mitigate this
problem by constructing filler projections. By taking the volume reconstructed from the
original projections (Vall), we can reproject new projections that hypothetically contain the
blur. We apply a small median filter to Vall before reprojecting to attempt to remove any
motion incorporated into this reconstruction. Furthermore, to eliminate the introduction of
motion artefacts from outside the ROI, we synthesize merged projections consisting of the
reprojection outside the edge-blurred 2D ROI mask and the original projection inside the 2D
ROI.

Individual Backprojections: Having the set of merged and reprojected projections at
matching acquisition angles, we reconstruct a given bin volume by choosing the merged
projections that are assigned to the bin and using the reprojected projections to fill in the
missing projections. Given the many thousands of reconstructions that are needed by the
search process, we factor out the backprojection part of the process. Typical filtered back-
projection algorithms [1] take each filtered projection and backproject them across a single
volume. This is equivalent to backprojecting them into individual volumes and subsequently
averaging these “backprojection volumes”. This preprocessing allows us to reconstruct from
multiple hypothesised binnings merely by averaging the relevant backprojection volumes
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together.
Reconstruction in eigenspace: If we apply Principal Components Analysis (PCA) to

the ROI-clipped backprojection volumes, we obtain a set of low-dimensional eigenspace
projections of the backprojection volumes. Taking the mean of a set of vectors in this space
is the same as taking the mean of the original vectors, after projecting back into the origi-
nal space. Likewise, Euclidean distance between vectors is preserved. This means we can
easily calculate the sum of squared differences between volumes in eigenspace (as SSD and
Euclidean distance in the original space are equivalent). Finally, if we take the dot product
of a vector of the means of the eigenspace basis vectors (which may be pre-calculated) and
any vector in the eigenspace, we obtain the mean of that vector in our original space (i.e.
the greylevel mean). This is a key property because it allows us to calculate the mean of a
reconstruction without first projecting it back into the original space. Coupled with the SSD
property, we are able to generate, in eigenspace, the fitness score. Using PCA, we can take
vectors that contain tens of thousands of elements and truncate them – without loss – to vec-
tors of length ≈ 1320 (the number of merged projections plus the number of reprojections).
Besides making reconstruction fast enough for our purposes, PCA also allows us to evalu-
ate our reconstructions in eigenspace. The two averaged vectors that constitute two binned
reconstructions can be subtracted from each other and the resulting dot product gives us the
sum of squared differences in the original space. Likewise, by taking the dot product of the
vector with the means of the eigenspace column vectors, we obtain means of the vectors in
the original space.

We show results from four experiments, two synthetic and two animated. In the synthetic
case, we construct mathematical phantoms composed of ellipses, cubes, and cylinders and
project them using the same geometry as the Synergy machine. In the first experiment, we
simulate a sinusoidal motion along the z-axis, the axis of rotation. In the second experiment,
we include motion in the x and y axis to create a curved motion.

We now introduce a new method for generating motion from a physical phantom. A
QUASARTMrespiratory motion phantom with a wood cylindrical insert containing an acrylic
sphere was scanned in 16 static positions with the insert being moved 1mm in the z-axis di-
rection each time. A simple utility allows us to literally draw the z-axis motion we want over
time. The correct projections from the 16 sets of projections are then copied to simulate the
motion in a manner similar to “stop motion animation” techniques. In the first experiment,
we simulate a fast breathing pattern with 22 breaths in the two minute duration. In the sec-
ond experiment, we simulate a single shift in the sphere representing the type of motion that
might occur in the prostate region.

3 Results
In each experiment, we construct the motion and so can establish the correct binning assign-
ment and compare the results of our search estimation against the "ideal" binning volumes.
To calculate the correct assignment, we take a representative point in motion, e.g. the centre
of the moving sphere, and apply k-means clustering (k=2). Ideal binning volumes (Vgt1 ,Vgt2 )
are generated from this binning in the mannner described previously. In Figures 1 and 2,
the success of our approach is clear. Table 1 quantifies this by comparing the mean sum
of normalised absolute differences between matched volume pairs. Estimated volumes are
matched so as to minimise this difference metric. The differences between the estimated
volumes and ideal binning volumes is significatnly smaller than between the estimated bins
and the normal (blurry) reconstruction volume constructed by averaging all backprojection
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Comparison 1 2 3 4
Ideal (Vgt1 ,Vgt2 ) vs. Normal (Vall) 12.2 12.4 4.19 3.57
Estimated (Vest1 ,Vest2 ) vs. Normal (Vall) 12.0 12.4 4.28 3.64
Estimated (Vgt1 ,Vgt2 ) vs. Ideal (Vgt1 ,Vgt2 ) 2.87 .906 .662 2.82

Table 1: Comparison of reconstructions for four experiments. All comparisons are mean
normalised sum of absolute differences (over matched volume pairs). Column 1 shows the
synthetic z-axis only experiment; column 2 shows the synthetic phantom with three dimen-
sions of motion; column 3 shows the two-state wood phantom results; column 4 shows the
22-breath phantom simulation results.

volumes. The differences between the ideal bins and the normal reconstruction is shown for
comparison. Of intererest is the fourth column; it reveals that our current algorithm still has
room for improvement.

4 Discussion
We demonstrate initial feasibility of a new binning method requiring no motion model on
synthetic and physical phantoms for the two-bin problem. We also illustrate a technique for
simulating motion using a real phantom that doesn’t require additional scans. The principle
limitation of this new technique is that it is constrained to 1D motion. However, it is useful
for exploring non-periodic types of motion in lower abdominal regions of the body. There
are two potential approaches to extending the method to greater than two bins (and hence
non-linear motion). Firstly, the number of bins in the search assignment could be increased.
However, as the search space has size NM (where N is the number of bins, and M is the
number of buckets) this would greatly increase the size of the search space. The alternative
approach is to perform multi-step binary binning; splitting each bin recursively. This has
(approximately) O(2) complexity in the number of bins and is thus more feasable. It also
has the advantage of using a similarity based stopping criteria to determine the number of
bins required. We are currently working on developing this approach. Subsequently we will
attempt to register the reconstructed volumes to obtain a motion model. If successful, this
technique has the potential to enable large retropective motion studies on the set of CBCT
projections already in existence.
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