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Abstract
This paper addresses a 2D+t registration problem in retinal vascular analysis with

specific application to the detection of microemboli. We propose a novel multi-stage
Global-RANSAC registration model to perform intra- and inter-sequence spatial regis-
tration. First, a projective RANSAC algorithm is employed using a quadratic pairwise
homography. This is applied in a local-then-global hierarchical ‘joint’ registration frame-
work. Post-registration, vessel centrelines segmented by a scale space approach are used
to construct a ‘map’ for comparing and monitoring temporal circulatory changes.

Introduction
The accessibility of the retinal vascular system has spawned a huge range of clinical and
pre-clinical research and diagnostic techniques as it provides a unique access point to the
in vivo study of a complete vascular bed in a minimally invasive manner. Fluorescein an-
giography is a well-established technique for clinical access to the retina [1]. The passage
of fluorescein dye through the retinal vessels reveals both the vessel structure and the rate
of retinal blood flow. Measurements have linked changes in the human retinal vasculature
with diseases such as hypertension, diabetes and age-related macular degeneration [2]-[4].
Leakage is associated with the breakdown of the blood–retina barrier; occluded vessels give
rise to areas of impaired perfusion; microaneurysms or neovascularisation is indicated by
the genesis of anomalous vessels [5]. These visible abnormal structural changes indicate
the presence of later-stage diseases. However, for early-stage detection, the focus should be
on capturing subtle changes in the retinal circulation. This requires establishing correspon-
dence between microvasculature measures and retinal blood flow, and subsequent monitoring
of one or more parameters over the course of time. Previously suggested parameters include
blood flow velocity [6]; arteriovenous passage time [7]; difference of arterial and venous
times to maximum intensity [8]; time to maximum image [9]. However, the high resolution
imaging necessary to capture microvascular structures individually also needs registration of
equivalent precision to accurately measure changes over time.

Clinical Significance In this paper, we take a fresh approach to detect subtle microvas-
culature occlusion, in the context of (micro)embolic surges during trauma or surgery, that
could be associated with cognitive impairment or even morbidity [10]. Microemboli may
cause reduced blood perfusion or even the apparent disappearance of vessels and/or vessel
branches (microvascular occlusions). The occurrence of emboli is usually assessed clini-
cally using Transcranial Doppler ultrasound (TCD) [11], but many emboli are smaller than
the detectability threshold of TCD. Blauth et al. [4] therefore suggest that comparison of
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pre- and post- operative retinal fluorescein images might indicate with greater sensitivity the
existence of microemboli and provide a visual indication of the site(s) of occlusion. This
is technically demanding as it requires access to information both at the pixel level and at
the vascular structure level to establish the patient’s vasculature ‘map’ both in pre- and post-
intervention images, and is often complicated by temporal dynamics of blood flow. We there-
fore have two technical problems to solve: image registration and vessel segmentation. We
need to geometrically align our sequences of angiograms into a common coordinate system
(the reference), then to distinguish vascular segments from the background in the acquired
images.
Previous Relevant Work Vascular bifurcation points labelled with vessel orientations,
probability weighted by an angle-based invariant, were sorted according to respective like-
lihoods of assumed global affine transformation between frames by Zana et al. [12] using a
Bayesian–Hough transform. Chanwimaluang et al. [13] extracted the medial axes of vessels
as features. The similarity matrix for correspondence based on the centreline orientations
was then converted to a prior probability that the extracted landmark locations were correct.
Hierarchical estimation of the transformation model was performed, refining upwards from
zeroth (translation), to first (affine), and finally the second (quadratic) order. Both of these
approaches could be easily handicapped by inaccurate feature detection, resulting in false
transformation estimation with a non-negligible a posteriori probability. Stewart et al. [14]
put forward the dual-bootstrap iterative closest point (DB-ICP) algorithm. Small bootstrap
regions are generated from hypothesized landmark correspondences and their surrounding
vasculature, then progressively iterated upon to refine the transformation estimate. This ap-
proach requires accurate initialization of matching point correspondence.

Methods
Pairwise Registration Arbitrary between-image distortion or degradation may arise due
to geometric distortion, radiometric degradation, corruption by additive noise, and other
changes in the scans to be described below. It is necessary to distinguish between image
deformation (geometric ‘noise’) and the real change of the scene (‘signal’). Furthermore,
during clinical photography, the patient’s head and eye can move relative to the camera dur-
ing image capture. Many existing registration techniques do not deal with large geometric
distortion other than perspective distortion (computer vision) and relative weak field distor-
tion (MR imaging). Distortion in retinal scans was tackled by introducing spherical models
[15]. While the retinal surface may be crudely approximated by a sphere, departures from
this assumption induce some degree of error. This is further complicated by pixel intensity
shifts due to the temporal diffusion of injected fluorescein dye confounded with uneven and
unsteady global illumination.
At the pairwise level (registration applied to each pair of images in the set), we combine
a projective RANSAC (iterative outlier rejection scheme) algorithm with a quadratic “pair-
wise” homography transformation, Figure 1(a). To ensure robustness and reliability regard-
less of geometric rotation and scaling, the bifurcation points or vessel crossings of a vascular
tree (blood vessels) are generically regarded as a good source of landmark points (features).
The Harris corner detector [16] enhanced by adaptive histogram equalization is relatively ro-
bust in feature extraction even when fluorescein dye concentration is rather low, commonly
in the beginning (arterial phase) and the end (late venous and recirculation phase) of the
angiogram sequence [1]. We putatively match these ‘corners’ by maximizing the normal-
ized cross-correlation between the features from the sensed frame (the image that requires
registration) with those from the reference frame, within windows surrounding each feature.

180



AUTHORS: CAO, BHARATH, PARKER, NG, ARNOLD, MCGREGOR, HILL 3

This comparison process filters out implausible correspondence pairs. The quadratic trans-
formation model, with 12 degrees of freedom (see Equation 1), counteracts warping and is
sufficiently flexible to reflect the spherical distortion introduced by retinal imaging geome-
try. Model parameter estimation benefits from both ‘false corner’ rejection, near and beyond
the image field-stops (see Section on Joint Registration), and [17]. RANSAC iteratively
detects and rejects gross errors due to inaccurate local feature characterisation. Combined
with a quadratic homography, the algorithm yields a high degree of accuracy even when
a significant proportion of ‘outliers’ is present in the data set. Figure 1(b) & (c) compare
between-frame pixel intensity differences without and with our pairwise registration model.

Let p px
py

, q qx
qy

denote the feature-point coordinates from images P and Q, while

M m0 m1 m2 m3 m4 m5
m6 m7 m8 m9 m10 m11

denotes transformation model parameters, for

x q qx qy 1 q2
x q2

y qx qy
T , the transformation can be represented as: p Mx q (1)

(a) (b) (c)
Figure 1: (a) Flow chart illustrating pairwise registration; (b) Intensity difference between two frames
half a sequence apart without pairwise registration (SD = 32.48); (c) Intensity difference between the
two frames after pairwise registration (SD = 19.54).

Joint Registration To compound temporal information both within a consecutive sequence
of retinal angiograms (intra-sequence) and across sequences taken before and after the oper-
ation, separated by at least a few hours (inter-sequence), we need a systematic framework.
This should first align corresponding pixels intra-sequentially, then align the pixels inter-
sequentially. Multi-temporal registration is demanding as it is vital to maximize the point
correspondence between similar structural features while still being able to differentiate or
detect pathological changes of clinical interest. Temporal diffusion of injected dye and natu-
ral variability of blood vessels further complicate the 2D+t joint-level registration problem.
The centreline locations of the segmented vessels [18] have subpixel resolution and are less
resilient to noise from misclassification. In clinical practice, capillaries may ‘appear’ then
‘disappear’ from sequential frames due to changes in dye concentration or acquisition noise.
Images at the start and the end of the angiogram sequences reveal significantly less informa-
tion about vascular structure than images obtained during the peak of dye concentration. We
thus implement a scheme that takes into account centreline information at all times during the
map construction. After initial segmentation of each frame, we impose a further constraint
on the calculated centreline locations: for an extracted centreline to be valid, there must exist
at least two frames in the sequence with similar location within a predefined city-block pixel
distance. Each ‘true’ centreline location is stored to construct our compound maps.
Let us consider two time sequences of retinal data, acquired from unknown spatial locations,
at unknown times relative to the cardiac cycle; we denote these unregistered time sequence
images, by

S A f A
n xA

n yA
n ; tA

n n 1 2 3 NA
and S B f B

n xB
n yB

n ; tB
n n 1 2 3 NB

(2)
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The goal of our registration task is to spatially register the intra-sequence images of S A to a
reference spatial coordinate system for that sequence, and to align images of S B with their
own reference coordinate system. We then register the two reference coordinate systems
for SA and SB. Finally, vessel maps vα xA yA and vβ xB yB are created by accumulating
information across time about vessel centrelines, while incorporating consistency checks for
registration and segmentation. Comparisons can then be performed between the maps for
vessel centrelines vα xA yA and vβ xB yB to identify potential sites of vessel occlusion.
During the passage of the bolus of fluorescein, there will be a frame which contains a max-
imum in dye contrast. However, this does not justify it as the optimal choice of global
reference. Instead, we construct a global reference frame for any sequence SA as

f A
GR xA

GR yA
GR; tA

GR argmin
n NA

f A
n xA

n yA
n ; tA

n MA
n xA

n yA
n ; tA

n (3)

where denotes a spatial average, and MA
n xA

n yA
n ; tA

n is an appropriate spatial weighting
function. We use a simple 2D mask containing unity for points xA

n yA
n within the circular

region defined by the field-stop, and 0 outside this region. Other (e.g. centre) weighting func-
tions could also be used. The centre and radius of this region are determined by a circular
Hough Transform. Figure 2 illustrates this selection process. The peak in the plot (Fig-
ure 2(a)) of spatially averaged fluorescein concentration in the pre-op sequence against the
frame number (corresponding to its acquisition time) determines the frame (highlighted in
gray dashed-line in upper left quadrant in Figure 2(c)) as the global reference within the pre-
op sequence. Meanwhile, Figure 2(b) illustrates the global reference of post-op sequence,
framed by a dashed line in the lower right quadrant of Figure 2(c).
The global frame is not used immediately; rather, its location in time is used to establish a
subdivision of the sequence SA into two sub-sequences SA1 and SA2. These subsequences
are repeatedly subdivided until they are of length 3-5 frames. At this point, the mid-point
of each sub-sequence is used as a local reference frame (e.g. f A1

LR xA1
LR yA1

LR; tA1
LR ). Neigh-

bouring frames are then spatially registered to these local reference frames. For example,
for a sequence SA of length 7 frames, two sub-sequences, SA1 and SA2, are obtained, with
corresponding coordinate systems. These two local coordinate systems are co-registered to
the global reference for SA. A similar process is applied to SB, separately. As a final stage,
the two coordinate systems defined by xA

GR yA
GR; tA

GR and xB
GR yB

GR; tB
GR are registered.

Figure 2(c) exhibits a montage (from top-left to bottom-right, row-by-row) of both inter-
and intra- sequentially aligned angiograms. A key feature is that the border of each frame
in the pre-op sequence exhibits a visible rotation with respect to that of the post-op frames.
In contrast, the centre of the fieldstop region from each frame seems nicely aligned with its
neighbours. This demonstrates the success of this registration algorithm.

(a) (b) (c)
Figure 2: (a) Pre-op spatially averaged fluorescein concentration against acquisition time; (b) Post-op
spatially averaged fluorescein concentration against acquisition time; (c) Both global references in
pre- and post- op sequences (framed by a dashed line) determined from the intensity-time course plots.
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Conclusion and Further Work
Individual capillaries have been identified and quantified (see Figure 3) in fluorescein an-
giograms taken immediately pre- and post- orthopaedic surgery. The results compare well to
non-quantitative conclusions of ‘expert’ observers who examined the original images.
Due to the difficulties of obtaining the ground truth for our retinal image analysis, we are
hoping to validate our novel registration using a synthesized database, allowing us to justify
our approach and to evaluate its accuracy and robustness. A known distortion, introduced
manually, can be used to evaluate the registration components of the algorithm, while detect-
ing a ‘virtual’ occlusion would validate our entire automation scheme.
Future development of this technique lies in extensive validation and real-time performance
that could be adopted and evaluated in an inter-intervention setting. Notably, we are hoping
to incorporate indicators of the success or failure of the registration process as a safeguard to
prevent improper conclusions drawn on poorly registered images.

(a) (b) (c)
Figure 3: (a) Macular vasculature centreline imposed on pre-operative fluorescein angiogram map;
(b) Macular vasculature centreline imposed on post-operative fluorescein angiogram map; (c) Missing
centreline pixels (in red) identifies sites (dashed circles) of microemboli.
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