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Abstract
In this paper we extend the theory of non-parametric windows estimator to the vec-

tor space, aiming to establish a more generic probability density estimator that can be
used in building an effective automatic image segmentation algorithm. We have veri-
fied our theoretical advancement, through two different experiments in medical imaging,
and demonstrated the superior performance and benefits of this method compare to the
traditional histogram estimator.

1 Introduction
Probability density functions (PDF) are central to many advanced segmentation and registra-
tion techniques. A number of PDF estimation methods have been developed and applied to
image analysis. PDF estimation for medical applications increasingly uses non-parametric
(NP) methods because for most medical applications, it is neither correct nor sufficient to
assume a particular parametric form; because image noise is typically not Gaussian; anatom-
ical structures are complex and variable; and the presence of various imaging artefacts. For
these reasons, only NP methods are feasible for use in the field of medical image analysis.
In this paper, we will focus mainly on the method of PDF estimation by histograms; and
the novel approach by NP windows (NPW) [2], [4]. A third NP method, kernel density
estimator (KDE), has been introduced and discussed more extensively in [3]. Histogram
estimators are conceptually simple and computationally fast but require a large sample size
to produce an accurate estimate. Moreover, they suffer from the binning and choice of ori-
gin problems. The kernel density estimator solves these and gives a better convergence
rate. However, determining the optimal bandwidth remains challenging as even the latest
cross-validation-based algorithms can be computationally demanding [2]. We have previ-
ously demonstrated [1] the advantages and use of NPW for segmenting malignant pleural
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mesothelioma (MPM)1 based on intensity values on thoracic CT scans. It was found that
scalar NPW outperforms the histogram estimator in its smoothness. This method also offers
advantages over KDE in terms of its computational requirement (103 faster).

(a) Manual Segmentation (b) Initialisation (c) Segmented Tumour

Figure 1: Preliminary level sets-based tumour segmentation using PDF estimates

In [1] we have made observations on PDFs, and showed that PDF-based segmentation for
MPM is feasible, as supported by the semi-automatic segmentation results (given in Fig. 1,
using level sets segmentation based on Battacharya measures). In a follow-up study involv-
ing a group of 35 data samples, the algorithm performed with a good degree of accuracy
in cases where tumour was surrounded by effusion or aerated lung, with a mean difference
in aerated lung of 6% (+/- 2% std.dev.) compared to radiologist derived areas. However,
the algorithm was less successful at segmenting tumour (25% mean difference and +/- 15%
std.dev.) from atelectatic lung or diaphragm. In fact, we note that for most complex medical
segmentation problems, image intensity alone is not sufficient to give accurate and reliable
results. This necessitates the need to further investigate the application of the NPW estimator
in automatic image segmentation. A good starting point is to examine ways in which clinical
manual segmentations are typically accomplished. We note that in addition to image pixel
intensities, texture; tissue heterogeneity; and general knowledge on human anatomy are of-
ten used in identifying a tissue’s boundaries in an image scan. These additional measures
may potentially support the development of a better segmentation algorithm. Our goal is to
establish an NPW-based estimator for vector-valued data (n-tuple where n is the size of the
vector) where two or more image properties are associated with each pixel that initially had
only a greyscale intensity measure. As most of these other quantities are derived from hence
dependent on the intensity values, it is not sufficient to simply define the n-tuple joint distri-
bution as the product of their marginal distributions. In order to incorporate these properties
into our algorithm, we will need to extend the founding theories of NP windows onto the
vector domain. In this paper, we present the newly developed theories and their derivations
in Section 2. Experimental validation of our method is described and shown in Section 3,
followed by a discussion of the results and possible future works, which is given in Section 4.

2 Methodology
We begin with a 2-tuple vector Fy1,y2(x) where for each x there are two associated quantities.
This can be a combination of any two arbitrary pieces of information, y1 and y2 given in
an image sample. For instance, in an optic flow map, they can be the u(x,y) and v(x,y)

1a form of lung tumour
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Conditions Case
a1,a2 �= 0 a2

a1
y1 +b2− a2

a1
b1 = y2

a2 = 0,a1 �= 0 y2 = b2
a1 = 0,a2 �= 0 y1 = b1
a1,a2 = 0 a point at (b1,b2)
Table 1: Specifying NPW boundaries

components of the flow. Alternatively, for this project, they could be the intensity and texture
measures in a greyscale CT scan. For simplicity, a linear relation y = ax +b is assumed for
the data contributing to a component NP window. We have y1 = a1x+b1 and y2 = a2x+b2,
giving two sets of parameters (a1,b1) and (a2,b2). In vector notation, which we will use
throughout this section:

�y =�ax+�b (1)

where�y =
�

y1
y2

�
, �a =

�
a1
a2

�
and�b =

�
b1
b2

�
for 0≤ x≤ 1.

Assuming a uniform distribution for x : Fx(x) and use i as the indexer to elements in the
vectors such that i = {1,2}.

x =
yi−bi

ai
: Fx(x) = 1; (2)

The joint distribution Fy1,y2(x) or F�y(�y) is then given by:

Fyi(yi) =
1

|dyi/dx|Fx(x) =
1

|dyi/dx|Fx(
yi−bi

ai
) (3)

such that [ d�y
dx ] =

� dy1
dx
dy2
dx

�
for b1 ≤ y1 ≤ a1 +b1, b2 ≤ y2 ≤ a2 +b2.

The modulus in this case is the diagonal length of a right triangle formed by a1 and a2, so,

Fyi(yi) =
1�

a2
1 +a2

2

Fx(
yi−bi

ai
) =

1�
a2

1 +a2
2

(4)

Therefore the 1-D NPW estimation for a 2-tuple vector can be found as:

F�y(�y) =






1�
a2

1 +a2
2

for region A and �a �= 0 (5a)

1 when �a = 0 (5b)

Note from a histogram estimate of a 2-tuple vector signal, A is simply the diagonal
line crossing the region defined by the component NP window. More specifically NPW
boundaries A can be written analytically, as given in Table 1.
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(a) Histogram Estimation for 2-tuple vector (b) Regional boundaries

Figure 2: b) illustrates NPW estimator for a 2-tuple vector, range A is a diagonal crossing
the region highlighted in grey. Shown here is one of the seven possible cases, i.e a1,a2 > 0
Note this is only the idealised scenario where the diagonal connects the corners of a defined
area, detailed binning operations are necessary in the algorithm implementation

3 Experimental Results
To validate our implementation of the 1-D 2-tuple NPW, we have estimated the averaged
joint distributions (estimating the scanline PDFs followed by computing their algebraic
mean) in two notable medical applications. The first is an estimation of the two colour chan-
nels (red and green) of a coloured CT scan of the lung (used for diagnosing emphysema, a
lung disease characterised by abnormal enlargement airspaces distal to terminal bronchioles,
shown in Fig. 3). The purpose is to assess the functionality of our implementation and com-
pare results to ground truth, which in this case, is the 1-D 2-tuple histogram estimator. We
then applied the algorithm to estimate the joint distribution of scanline pairs in a thoracic CT
image (Fig. 4). We first considered a pair of two adjoining scanlines and then two remotely
separate scanlines, all taken from the same image slice. All PDFs shown in the figures are
normalised.

(a) Original Image (b) Histogram (c) NPW

Figure 3: Exp. I: Lung CT for diagnosing emphysema, performed at the same time as
coronary artery CT, giving values for channels R,G; b) and c) show the peak compositions
in these channels that make up the dominant colours in the scan.

4 Discussion
To evaluate the accuracy of NPW, L-2 norm defined by L2 =

�
Σi(uHis(i, j)−uNPW (i, j))2

is used; where uHis(i, j) and uNPW (i, j) are histogram and NPW estimations, respectively.
The processes are also timed in order to assess the computational efficiency of our method.
(Table 2) It should be noted that the NPW estimator showed a consistent high level of
accuracy and good computational efficiency compared to the histogram estimator for both
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(a) (b) (c) (d) (e)

Figure 4: Exp. II: a) Thoracic CT slice of a MPM patient; Region of interest outlined in
red b),c) Histogram estimate of adjoining and separate scanlines, respectively; d), e)NPW
estimate of the same scanline pairs)

Experiment Time-Hist(s) Time-NPW (s) L-2
1 0.008395 0.008396 7.68e-3
2 0.007440 0.007480 6.61e-3

Table 2: Performance of NPW

experiments. The smoothing effect of NPW over histogram is also clearly observed in both
cases. In the first experiment, we observe two peaks which correspond to the two dominant
colours in the scan. Also note the scattering effect in the distant scanline case in Fig. 4,
which complies with our prediction that attenuation gradually changes across the scanned
region. The reduction of this effect indicates a greater degree of correlation hence giving
light to scanline registration.

In this paper, we have derived and implemented the theories of NPW estimation for 1D
2-tuple vector signals. The immediate next step is the extension and implementation of NPW
for 1D N-tuple vectors followed by the 2D N-tuple case. The latter would enable us to apply
the vector-spaced NPW method to a wider range of applications. This includes a good use of
the theories in the field of multi-modial registration where both image intensity and entropy
are involved. Additionally, it is possible as future work to apply the method to estimate the
joint distributions of image intensities with other key image quantities such as texture and
entropy. Image texture is mostly image technique-dependent and is hard to accurately quan-
tify. Tissue heterogeneity can, for example, be measured by information-theoretic entropy
H =−∑i P(i)logP(i) where P(i) is the probability at value i. Higher entropy values suggest
a more heterogeneous intensity distribution and vice versa.
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