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Abstract
Dynamic contrast-enhanced MRI (DCE-MRI) of the breast is widely used for detec-

tion and quantification purposes of breast cancer. In this paper, we present an evaluation
of three similarity measures for local region of interest registration of small lesions in
DCE-MRI. We evaluate the different registration results using a pharmacokinetic model
function and compare measured perfusion data to the modelled function values. In ad-
dition, we use acquisitions from different time frames (pre- and post-contrast) as fixed
image and observe the influence on the registration quality. The registered images lead
to an improvement between 25.9% and 48.8% in terms of fitting quality to the pharma-
cokinetic model. Improvements could be achieved with all three similarity measures.

1 Introduction
Dynamic medical images like DCE-MRI are used to display active processes within the hu-
man body. Therefore, a series of images showing the exact same scene has to be acquired to
reveal a signal change over time. The blood flow of specific body parts is visualised through
an injected contrast agent (CA). DCE-MRI for breast cancer diagnosis highlights suspicious
lesions inside the female breast, because tumours lead to formation of new vessels (angio-
genesis) which accumulate contrast-enhanced blood. Moreover, the vessel permeability can
be examined, giving relevant information for diagnosis. DCE-MRI is particularly sensitive
for small lesions and spread tumour cells [3].

In dynamic imaging, identical conditions cannot be guaranteed to be achieved for each
snapshot of a time series. Apart from camera system dependent influences like noise arte-
facts, motion of the patient poses a main problem in dynamic image acquisition. This mo-
tion evokes false inter-voxel correspondences between different time acquisitions. This leads
to incorrect assumptions in diagnosis as physicians evaluate perfusion behaviour over time
voxel-wise. DCE-MRI is very sensitive for detecting small enhancing lesions on which we
will concentrate here. Motion influence has a particularly strong impact on enhancing struc-
tures consisting only of a small number (10–100) of voxels.

To compensate for this, registration algorithms try to find a transformation to align im-
ages by optimising a similarity measure indicating best matchings. In general, registration
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approaches try to find the best solution minimising a global criterion on the whole image. If
a region of interest (ROI) – representing a part of the whole dataset – is examined, it cannot
be assumed that the best possible matching in terms of the local observation is obtained.

We employ a two-step registration procedure beginning with the first step registering
the whole dataset with a global non-rigid approach [6]. In the second step only the ROI
is addressed and registered using a rigid approach. For the second step we investigate the
performance of three different similarity measures: Mutual Information (MI) [4], Sum of
Mean-Squared Distances (MSD) and Normalized Cross Correlation (NCC).

The evaluation is performed by the use of a pharmacokinetic model [5] which simulates
the concentration of CA at specific times after the injection. The measured MRI signal
enhancement in tumourous regions before and after the second registration step is compared
to the simulated signal in order to obtain a fitness quality value.

2 Related Work
For DCE-MRI data of the breast a non-rigid registration procedure is required, because the
soft tissue leads to deformation that cannot be described by affine transformations. Guo et al.
[2] give a survey about recent approaches of breast image registration techniques in DCE-
MRI. Some of those techniques already use a two-step strategy by applying a global rigid
and a local non-rigid approach sequentially (e.g. [6]). For two reasons this does not enable
optimal results for ROI with small enhancing lesions. First, the criterion to find the local
transformation must still be globally constrained to prevent arbitrary deformation. Second,
the step finding local transformations aims for a compromise to suit best for all areas in the
image. In contrast, we seek a registration for a ROI only.

Tofts et al. [7] have published the first perfusion model to quantitatively analyse DCE-
MRI data of the breast. They calculate the CA concentration depending on physical pro-
perties, acquisition related parameters and the physiological character of tissue. In general,
the latter is unknown and thus is determined by fitting the function to the concentration
measured in the image data, leaving physiological values as free parameters. Radjenovic et
al. [5] developed a modified model function and performed a practical clinical study to show
the applicability of their model. We use it to evaluate our registration results.

3 Registration
The first step of our registration procedure uses the approach of [6] on the whole image.
Subsequently, there still exist regions where motion is present. Therefore, the second step
performs rigid registration on defined ROI assuming one image out of the series to be fixed
and finding transformations for each of the remaining images to match the fixed image. We
assume transformations in small ROI to be almost limited to translations with a maximum
shift of three voxels and rotations with small angles (up to 10 degrees). ROI are manually
defined such that they have approximately the double size of the lesion to be examined.

We want to investigate the performance of different similarity measures to determine the
capability to compensate for motion in the presence of noise and signal variation due to CA
enhancement in the ROI. We choose the commonly used approaches: MI (as described by
Mattes et al. [4] is used), MSD (Eq. 1) and NCC (Eq. 2).
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Ai and Bi are the ith voxels of an image A and B resp. N is the total number of voxels. We
aim to register a set of dynamic images that focus on regions showing perfusion dynamics.
MI is used to register images acquired with different modalities as it takes into account the
joint entropy of two images. In our case, the images are from the same modality, but are
showing different image intensity levels. The MSD measure aligns voxels showing same
intensities, which cannot be assumed in our case. However, there are parts of the images
showing no dynamics and thus fulfilling the requirement. We expect these parts – the sur-
roundings of enhancing structures – to be sufficiently dominating to guide the registration
process. The NCC metric compensates for multiplicative intensity factors through normal-
ization.

4 Evaluation
For evaluation, no ground truth is available because the true motion shift and the resulting
deformation of tissue are unknown. Thus, we decided to use the properties of the perfusion
and the CA distribution to measure the accuracy of the second registration step. Therefore,
the pharmacokinetic model function from [5] is deployed to produce CA concentration over
time from areas where perfusion is present (at least 60% on enhancement). The signal in-
tensity SI can be calculated at time t with the two free physiologic parameters ve and kep
defining the leakage space and capillary permeability using Eq. 4.
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The approach uses acquisition related parameters (D, T , T 1 and τ) and physical constants
(kW

el , a1, a2) taken from [5] as well as the camera related parameter T R. SI0 is the pre-
injection signal at t = 0 and R1 = 4,5 mMols−1 is a relaxivity constant1. By varying the two
physiologic parameters and least square fitting the resulting function values of SI(t) to the
signal enhancement of measured data, the best fitting parameters are determined. A fitness
value f characterizing proximity to the model function can be derived by calculating the
squared distances to the true MRI signal M(t) with n time steps measured:

f =
n

∑
t=0

(SI(t,ve,kep)−M(t))2 → min. (5)

1see [5] for more details on parameters
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Two different experiments are performed to determine the fitness value achieved by the
second registration step. Each experiment is performed before and after the second registra-
tion step for each similarity measure. The first experiment calculates a voxel-based fitness
value by applying Eq. 5. The second experiment takes into account that single voxels are
strongly subject to noise. The region merging procedure from [1] grouping voxels with sim-
ilar perfusion characteristics is used to average the time signal of several voxels to reduce
influence from noise. Then the fitness value of each region is obtained.

In addition, these experiments are performed twice, using a pre-contrast (time step 0)
and post-contrast (time step 2) image as fixed image for registration. In pre-contrast phase
enhancing structures are not visible and cannot be used in registration. Similarity between
different time step images is increased using a post-contrast image as fixed image. The hy-
pothesis is that post-contrast images lead to better results than using the pre-contrast image.

5 Results and Discussion
We carried out the described procedure for 20 small lesions from 16 patient datasets. The
datasets have been acquired with a 1.5 T MRI scanner (Philips Medical Systems) using a
Spoiled Gradient Echo Sequence with TR ≈ 11 ms, TE ≈ 6 ms and a flip angle of 25◦.
For each patient 5–6 dynamic scans have been performed with varying temporal resolution
between 62 ms and 110 ms. The first scan is performed without CA. At the end of the
first scan CA is injected. The spatial resolution of the whole examination area is 512 × 512
voxels with 55 to 100 slices acquired. The pixel spacing is 0.6 mm, the slice spacing 1.5 mm.
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Figure 1: The average improvement of fitness and standard deviation of the experiment:
values < 1 indicate improvement, values > 1 indicate deterioration.

We compared three different similarity measures for ROI-based registration of contrast-
enhancing lesions in DCE-MRI of the breast. Consistent to our expectations, improvements
could be achieved by using all similarity measures, independent of the fixed image used
for registration (Fig. 1). In general, the post-contrast image used as fixed image achieves
better results. This may be due to the point, that some enhancing structures are simply not
visible yet in pre-contrast images. Concerning the similarity measures, NCC achieves the
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best improvement overall with 39.4%, followed by MSD with 36,5% and MI with 20.1%
(all values averaged over pre- and post-contrast results).

The MSD measure expects same intensities and is based on the surroundings of perfused
areas in the first place. Other areas are confounding factors. NCC expects linear correlated
scenes, i.e. includes areas which change their intensities in equal measure. On the other
hand MI considers local similar areas taking into account that between time steps there may
be unequal changes of intensity in different perfusion areas.

Hence, we conclude that the performance of each measure depends on the properties of
the ROI, especially the proportion of perfused and non-perfused parts in the image and the
dynamic behaviour of lesion surroundings. Through visual exploration we found out that MI
performs better, when the whole ROI exhibits CA enhancement at various extent. A more
detailed analysis on that is left for further investigation. A general improvement could be to
mask out confounding parts of the image depending on the similarity measure used and not
considering them in similarity calculation.

The evaluation using a pharmacokinetic model shows that the fit in relation to measured
data improves through local registration. This improves the image information relevant for
breast tumour diagnosis. In the future, we plan to use the model to describe the change
of intensity between the images recorded at different time steps. We want to focus on a
combination of the region-based evaluation (segmentation) and a registration process.
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