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Abstract

Optical flow models are widely used for different image registration applications due
to their accuracy and fast computation. Major disadvantages to overcome for medical
image registration are large deformations and inaccurate regularisation at discontinu-
ities, which cannot be modelled accurately with quadratic regularisers, and an intensity
dependent energy term, which does not allow for images of different modalities. In this
work we present a multi-level framework utilising multiple warps, which succeeds in es-
timating larger deformations. We introduce a non-quadratic penalty function, for a better
modelling of discontinuities, that are caused by sliding motion of ribs against the lungs
during respiration. Our algorithm is extended to multimodal image registration tasks by
maximising the local alignment of the image intensity gradient orientation. We demon-
strate the findings on synthetic 3D CT data and clinical CT-CT images as well as on
CT-MRI data. Quantitative evaluation using the Dice coefficient shows improvements of
our new approach for single-modal data for the interface between lungs and ribs com-
pared to a commonly used parametric free form deformations (FFD) method and equally
good results for multimodal data.

1 Introduction
Non-parametric registration methods like elastic, fluid or demons [5] demonstrate attractive
capabilities for non-rigid medical image applications. These models estimate a dense motion
field between two images by minimising a cost function, which usually includes an inten-
sity based data term and a regularisation term to enforce a globally smooth deformation. In
contrast, parametric registration using B-splines and FFDs as presented in [7] use a mesh of
fixed control points and interpolate the deformation between them with 3D cubic B-splines.
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In this work, we show that a non-quadratic penalty function improves the registration accu-
racy at discontinuities within the motion pattern compared to FFD registration. For images
from different modalities, like CT and MRI, mutual information (MI) was found to be a suit-
able cost measure and is widely used in rigid, affine and parametric non-rigid registration [4].
Variational MI formulations were derived in [3]. However MI is most accurate and robust as
a global measure and non-rigid multimodal registration remains an active area of research.
We propose to use the local gradient orientation as a minimisation term for non-parametric
registration. Boundaries between neighbouring tissues often carry significant information in
medical images. The gradient of tissue boundaries might not have the same magnitude for
images of different modalities, but should have a consistent orientation. In [6] this finding
was used to improve the MI measurement for rigid image registration. We demonstrate that
using only the gradient orientation for non-rigid image registration leads to results similar to
FFD registration, which is using MI.

2 Method
2.1 Optical Flow Constraint and Regularization
Optical flow registration is based on the assumption that in a local neighborhood the in-
tensities of two images do not change over time: f (x + u, t + δ t) = f (x, t). For small dis-
placements a first order Taylor expansion yields the optical flow constraint: ∇ f · u = 0,
where ∇ f = ( fx, fy, fz, ft)T denotes the partial derivatives of the images and u = (u,v,w,1)T

the unknown deformation field between them. To solve this ill-posed problem, an addi-
tional regularization term is introduced. The classical global optical flow method uses the
quadratic term α|∇u|2 to enforce smoothness of the deformation field, where α serves as a
regularisation parameter.

E(u) =
�

Ω
(uT (∇ f ∇ f T )u+α|∇u|2)dΩ (1)

In medical images, a quadratic smoothness term can be too general, as there are naturally
occurring discontinuities in both the intensities of images at tissue boundaries, as well as
within the motion pattern or deformation fields. To address this complex motion problem,
we propose the use of non-quadratic penalisers within the energy functional. Charbonnier
et al. [2] proposed the function Ψ(s2) with its derivative Ψ�(s2), which allows for a convex
penalization and a simple globally convergent solution:

Ψ(s2) = 2β 2

�

1+
s2

β 2 , Ψ�(s2) =
1�

1+ s2

β 2

(2)

where β is set to a sufficiently small value 0.001 to obtain a penaliser similar to the L1 norm.
To minimize the energy E and solve for the unknown deformation field u, Euler-Lagrange
equations are derived and solved iteratively. Details of the implementation for the optical
flow framework can be found in [1].

2.2 Gradient Orientation for Multimodal Image Registration
As stated above, the orientation of gradients can be a useful measure for multimodal image
data. Pluim et al. [6] show that it improves accuracy and robustness in rigid image registra-
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Figure 1: (a) Simulated CT and MRI scans of the NCAT phantom at different respiration
levels (5 % added noise). CT at maximum expiration, MRI at maximum inspiration. (b)
Quantitative evaluation of segmentation overlaps of 5 regions of interest shows equally good
results for IRTK and our new approach, with improvements for lungs and liver.

tion using MI. The angle αi j between two locations i and j in reference and floating image
is defined by:

αi j = arccos
∇ fi · ∇ f j

|∇ fi||∇ f j|
. (3)

Gradients in two images are thought to have either a similar angle or an angle flipped
by π depending on image contrast. To account for both, we use a weighting function
w(α) = (cos(2α) + 1)/2, which favours both small angle differences and angles close to
π . An additional challenge in multimodal image matching lies in the fact that tissue bound-
aries may have gradients in only one of the considered modalities. The angle function is
therefore multiplied with the smaller of both local gradient magnitudes, thus the measure
M to be maximised becomes M = ω(αi j)min(|∇ fi|, |∇ f j|). Derivatives of this measure are
approximated by finite differences.

3 Experiments
To evaluate the accuracy and robustness of our new approach we tested it on synthetic and
real clinical CT and MRI image sets. For quantitative evaluation, we compared the results
for the registration of synthetic multimodal data with a state-of-the-art technique, IRTK1. A
multi-level setting and optimally chosen smoothing parameters were used to recover larger
deformations. We used sums of squared differences (SSD) for single-modal registration,
because this cost term is comparable to our approach, and normalised mutual information
(NMI) for multi-modal registration.

3.1 Synthetic CT and Multimodality Phantoms
To assess the registration accuracy, we tested and compared the algorithms on synthetic CT
data, where a ground truth segmentation is available. We used the NURBS based cardiac

1Image Registration Toolkit, http://www.doc.ic.ac.uk/∼dr/software/
Another efficient approach for parametric registration: "Dense image registration through MRFS and efficient linear
programming" was presented by Glocker et. al. in Medical Image Analysis, 12(6): 731-741, 2008
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Figure 2: Visual results for single- (top row) and multimodal (bottom row) 3D registration.
(a) Axial CT slice with manual segmentation of mesothelioma cancer overlaid in orange (b)
Difference to follow-up scan (c) Difference after applying the proposed method. (d) Axial
slice of MRI scan (e) Affine registered CT scan with MR contours (f) Non-rigid registration
with our approach, showing improved overlap of lungs, bones and body outline.

torso (NCAT) phantom created by Segars [8], which provides a physiologically and physi-
cally realistic model of motion of different respiration states and over the cardiac cycle. In
total, 30 phantom simulations over one breathing cycle with a maximum diaphragm move-
ment of 20 mm were obtained for a range of body weights (80 – 100 kg), for both CT and
MRI intensity labels. The images were additionally distorted by adding normally distributed
noise of up 10 % and translation blurring of 1.25 mm. Figure 1 (a) shows exemplary simula-
tions.Labels for regions of interest are provided by the simulation software and were used to
calculate the segmentation overlap after registration. The resulting Dice coefficient for both
single-modal and multimodal registration are given in Figure 1 (b). Overall, both approaches
show equally good results, when compared for the same registration task. The single-modal
implementation of our approach outperforms IRTK for all examined labels except for the
spine. The increased accuracy around the lung/rib interface strengthens the justification of
our non-quadratic regularisation term. The multimodal optical flow approach shows better
Dice coefficients than IRTK for liver and lungs and lower results for bones.

3.2 Clinical MRI and CT Registration

To demonstrate the capability of the proposed method, two datasets of clinical images were
studied. Pre- and post-treatment CT volumes of patients diagnosed with mesothelioma, an
aggressive form of lung cancer, and pairs of CT and MRI volumes of subjects suffering from
an empyema. The top row of Figure 2 displays one slice of a post treatment volumetric scan,
along with the difference images before and after registration of the pre-treatment scan to the
post-treatment scan using our proposed method. The results show a very high agreement with
the original slice, in particular for the challenging interface between the rib cage and lung.
To demonstrate the suitability of our multimodal extension, we firstly used affine registration
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to align a CT scan to an MRI of the same patient. Figure 2 (e) shows there is still a large
mismatch between the boundaries of organs. We then applied our non-rigid approach, which
demonstrates a considerably improved alignment with the target image.

4 Discussion
Non-rigid registration of clinical images can be challenging due to the complex motion pat-
tern between scans, or incomparable intensities when using different modalities. We present
a novel fast, robust and accurate technique, which is specifically adapted to align images with
large deformations caused by respiratory motion. An extension for multimodal data is given
based on the alignment of gradient orientation. This new cost term provides a promising al-
ternative to mutual information based measures, allows for rapid computation and preserves
discontinuities in the motion pattern. We show that quantitative evaluation of our extended
approach for multimodal data results in similar accuracy compared to a state-of-the-art al-
gorithm (IRTK). Visual results for the clinical CT/CT and CT/MRI application demonstrate
the good performance and generalisation of our new approach.
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