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Abstract

We present a new method for detecting vessels in retinograms. The Dual-tree Com-
plex Wavelet Transform (DT-CWT) [6] is used to provide a rich, multi-scale descrip-
tion of local structure, and a random forest classifier [1] is used to classify pixels as
vessel/non-vessel on the basis of their DT-CWT coefficients. The method is tested on
retinograms obtained from a publicly available database and our results are compared
with previously reported results for the same database. The best method to date achieved
an area under the ROC, A;, of 0.952, using a combination of pixel level and contextual
information. We achieve a comparable A, of 0.944, using only pixel level information.

1 Introduction

Retinograms — optical images of the retina — are an important tool for the early detection
of eye disease and, potentially, other health risks. Diabetic retinopathy, the leading cause
of adult blindness, has received particular attention [2], though other forms of eye disease
are also important, whilst retinal images may, for example, provide a valuable, non-invasive
approach to screening for cardiovascular risk [8]. Many developed countries have now in-
troduced a retinal screening programme, based on digital retinography, creating the oppor-
tunity to detect disease and monitor progress at a population level. Realistically, methods
of quantitative automated analysis will be required to realise this opportunity. An important
problem in the analysis of retinograms is detection of the blood vessels that lie on the surface
of the retina (see Figure 1). Some forms of disease can be detected directly from changes
in the vascular structure [8], whilst the vessel tree always provides an essential anatomical
framework for other forms of analysis. Vessel detection is a challenging problem because
retinograms are intrinsically noisy and many of the vessels have low contrast. The problem
of retinal vessel segmentation has been studied extensively. Staal et al [7] review some of the
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most important approaches, and describe a ridge-based analysis method. Niemeijer et al [5]
describe an evaluation methodology for retinal vessel segmentation and compare some of
the most important approaches to retinal vessel segmentation experimentally, using the pub-
licly available DRIVE database [5]. Other methods have since been evaluated in the same
way, and results published on the DRIVE website. These show Staal’s method to be the best
of those tested. We have used the same database and testing methodology to compare our
approach to the state-of-the-art.

(b)
Figure 1: Example of retinograms. (a) normal retinogram. (b) abnormal retinogram (abnor-
mal region circled). (c) manual segmentation of (a). (d) manual segmentation of (b) [7]

(d)

2 Methodology

2.1 Complex Wavelet Transforms

Wavelet analysis provides a powerful basis for capturing local structure. The discrete wavelet
transform (DWT) [3] provides a computationally efficient approach in which the wavelets
are discretely sampled and high-pass and low-pass filters are applied to successively down-
sampled versions of the original image, giving a set of wavelet coefficients at each pixel
which provide a rich, multi-scale description of local structure. A drawback of the DWT is
its shift dependence property [3]; another is that it provides very limited information on the
orientation of image features [3]. To overcome these problems, a complex wavelet transform
can be used [6]. The dual-tree complex wavelet transform (DT-CWT) combines two DWTs,
using even and odd wavelets to provide complex coefficients, whilst retaining the efficiency
of the DWT approach. In practice, the wavelet analysis is applied in 1-D, along rows and
columns, and 6 oriented 2D complex wavelets are constructed from different combinations
of the outputs, as shown in Figure 2. This analysis is performed at a series of scales differing
by a factor of 2, by successively down-sampling the image. For the coarser scales, a set of
responses is obtained for every pixel in the original image by interpolation [4]. The result
of applying the DT-CWT is thus a set of complex wavelet coefficients at each pixel for six
different orientations (sub-bands) and for each of a number of scales.

2.2 Random Forest Classification

We classify retinogram pixels into two classes — vessel or non-vessel — based on their com-
plex wavelet coefficients, using a random forest classifier [ 1] — an approach that is well-suited
to non-linear classification in a high-dimensional space.

Given a set of training data consisting of N samples each of which is a D-dimensional
feature vector labelled as belonging to one of C classes, a random forest comprises a set
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Figure 2: The oriented filters of the DT-CWT. Top set: real part. Bottom set: imaginary part.

of tree predictors constructed from the training data. Each tree in the forest is built from
a bootstrap sample of the training data (that is, a set of N samples chosen randomly, with
replacement, from the original data). The trees are built using a standard classification and
regression tree (CART) algorithm; however, rather than assessing all D dimensions for the
optimal split at each tree node, only a random subset of d < D dimensions are considered. The
trees are built to full size (i.e. until a leaf is reached containing samples from only one class)
and are not pruned. During classification, unseen feature vectors are classified independently
by each tree in the forest; each tree casts a unit class vote, and the most popular class can be
assigned to the input vector. Alternatively, the proportion of votes assigned to each class can
be used to provide a probabilistic labeling of the input vector.

3 Experimental Evaluation

We applied our approach to the DRIVE database, which contains 20 training retinograms
and 20 test retinograms, each with expert annotated ground truth (see Figure 1). We applied
a DT-CWT at 6 scales to all 40 images, giving a total of 72 (6 scales x 6 sub-bands x 2
complex components) features at each pixel. We found that expressing the complex values
in (magnitude, phase) form gave the best results, so that is the approach we adopted in all
the experiments reported here.

We considered several different approaches to using the information in the feature vec-
tors, and trained a random forest classifier with 100 trees for each, using the 20 training
images and the associated ground truth. In practice, we sampled around 3000 vessel pixels
and 3000 background pixels randomly from each image in the training set — 120000 in to-
tal. We built classifiers using the following approaches (these results are representative, we
tested other combinations that space does not allow us to report).

e Full feature vector: 72 dimensions

e Maximum sub-band — only the complex response with the largest magnitude across
sub-bands at each scale: 12 dimensions.

e Reordered sub-bands — full feature vector, but cyclically reordered so that the maxi-
mum response is always first: 72 dimensions.

e 3x3 neighborhood — concatenation of all the feature vectors in a 3x3 neighborhood
around the pixel: 648 dimensions.
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| Method | A | MAA | Kappa |

Human Observer n/a 0.9473(0.0048) | 0.7589
Staal 0.9520 | 0.9442(0.0065) | 0.7345
Current Method | 0.9440 | 0.9336(0.0254) | 0.6792
Niemeijer 0.9294 | 0.9416(0.0065) | 0.7145
Zana 0.8984 | 0.9377(0.0077) | 0.6971
Al-Diri n/a 0.9258(0.0126) | 0.6716
Jiang 0.9114 | 0.9212(0.0076) | 0.6399
Martinez-Perez n/a 0.9181(0.0240) | 0.6389
Chaudhuri 0.7878 | 0.8773(0.0232) | 0.3357
All Background n/a 0.8727(0.0123) 0

Table 1: Comparison between methods applied to the DRIVE database [5].

We then applied these classifiers to the complete set of images (training and test), result-
ing in a vessel probability for each pixel. For each method we plotted a receiver operating
characteristic (true positives vs false positives — ROC) for all the images in the test set, by
thresholding at a series of levels and comparing the result to the ground truth. The ROC
data was summarised by measuring A, the area under the curve (an area of 1 indicates per-
fect classification). We also calculated the maximum average accuracy and kappa value for
each method by establishing an optimal threshold using the training set, and applying that
threshold to the test set to give a ‘best’ segmentation.

The best results were obtained using the full feature vector approach, which gave a max-
imum average accuracy of 0.934 and A, of 0.944. These results are compared with others
obtained for the DRIVE database in Table 1. Our results are second only to those obtained
by Staal in terms of area under the ROC. Figure 3 shows typical vessel probability maps.

(c) (d)
Figure 3: Classification result. (a) normal retinogram. (b) probability map of (a). (c) abnor-
mal retinogram. (d) probability map of (c).

4 Discussion

Our results show that the DT-CWT coefficients capture a sufficiently rich representation of
local structure to allow effective vessel/non-vessel classification. The performance of our
method is comparable to the best method tested on the DRIVE database, even though the
competing methods use far more contextual information. We expect to improve our results
further by applying a contextual approach to our vessel probability images. As illustrated
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in Figure 3, a significant proportion of our classification errors occur around the edge of
the field of view, probably because ripples in the wavelet coefficients some distance from
the very strong edge, produce responses similar to those from vessels. This requires further
investigation, and may well be due to the fact that very few pixels will have been sampled
from these regions during training. In practice, these errors could easily have been removed
by shrinking the field of view by a few pixels, but we recognised that it was important to
present results that were directly comparable with those in the literature.

In summary, the approach we have presented is computationally efficient (it takes a few
minutes to train the classifier from scratch and a few seconds to segment each image), and
produces encouraging results. It shows significant promise as a component of a complete
system.
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