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Abstract 

This paper presents an unsupervised segmentation scheme to isolate pigmented skin lesion 
from surrounding normal skin. An adaptive mean-shift algorithm combined with maximal 
similarity based region merging is applied with a colour-spatial feature space to improve the 
efficiency and robustness of the segmentation approach. Upon comparison, the proposed 
method demonstrates good performance in achieving an automatic segmentation on various 
real skin data collected by ourselves and those downloaded from public dataset. 

 
 
1. Introduction 
Melanoma becomes one of the most common skin cancers in the UK. Most melanoma originates 
from irregular spreading of melanocyte cells which are responsible for producing the pigment 
melanin that colours the skin. As such melanoma usually has unique features of the colour and 
shape. Detection of a malignant tumor in its early stage not only reduces the mortality rate, but is 
helpful in reducing the expense associated with treatment. Measurement of features for diagnosis 
from images initially requires the detection and localization of the pigmented lesion area. 
Therefore image segmentation is considered to be the first step for achieving diagnosis in the skin 
cancers. 

In order to accurately segment the pigmented area, Xu et al. [1] proposed a heuristic method 
using double thresholds to isolate skin from lesion through a few selected border points. Schmid 
[2] introduced a fuzzy c-means based lesion segmentation method which required centres of skin 
and tumor areas as a prior knowledge. In these supervised approaches, segmentation results are 
dependent on the initial selection of normal skin and the suspicious lesion areas. Iyatomi et al. [3] 
automatically extracted a dermatologist-like lesion region by combining pixel-based and region-
based algorithms which rely on the approximation of the colour distributions of normal skin and 
pigmented lesion. However, colour information alone proved insufficient for a reliable automated 
segmentation of lesion [4]. Cluster overlaps in the colour feature space caused by additive noise 
as well as intrinsic artefacts usually results in poor skin-lesion separation.  

In this paper, an adaptive mean-shift and maximal similarity based region merging method is used 
to achieve an automatic skin lesion segmentation. By appending the 2D coordinates to RGB 
colour feature space, a 5D feature space is achieved to improve the segmentation result. The 
experiments validated that the proposed approach can automatically and accurately separate 
pigmented lesion and the surrounding normal skin on the data acquired from various imaging 
devices. 

2. Methodology 
Before proceeding segmentation task, a 2D anisotropic diffusion algorithm [5] is first applied 
with skin image to reduce the noise while preserving the significant features; then a contrast 
limited adaptive histogram equalization [6] is used to deal with the large variation in the natural 
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skin pigmentation across the population; finally the image pixel values in RGB channels are 
normalized and stretched to the same range [0 255] to obtain a similar dynamic range as well as 
to reduce the sensitivity to lighting conditions.  

There are essentially three parts in the entire segmentation framework. An adaptive mean-shift 
algorithm [7] is first applied to a compact of 5D feature vector, which includes colour and spatial 
information of each pixel. This step outputs an initial set of clusters. A further iterative region 
merging stage is followed up to prune the number of clusters by grouping the clusters with 
maximal similarity in the colour histogram [8]. Finally a weighted kernel k-means [9] is 
introduced to assign the remaining clusters to normal skin or pigmented lesion. 

2.1 Adaptive Mean-shift Clustering 

The mean-shift algorithm is a nonparametric clustering technique which does not require prior 
knowledge of the number of clusters, and does not constrain the shape of the clusters [7]. Let 

 be the set of feature vectors in a -dimensional feature space. The 
implication of the mean-shift property is that the iterative procedure 

                            (1) 

is a hill climbing process to the nearest stationary density point, which guarantees the 
convergence to the local maximum after a few iterations. Here function , is the profile of the 
associated kernel ,  is the window size determining the range of influence 
of the kernel located in , and  is the iteration number. 

Constant mean-shift using a fixed window size  instead of for each feature vector might result 
in clusters over splitting due to its small value or unexpected excessive merging from the 
selection of a large window. Therefore an adaptive value of  is required at each feature point . 
This so called adaptive mean-shift (AMS) [10] jointed with colour-spatial feature space forms the 
basis of our segmentation scheme. 

Taking , where  is the  distance between  and its k-nearest-neighbour . 
The window size  is the only numerical parameter in the AMS, thus the choice of  will have a 
significant influence on the initial clustering from the AMS and will further affect the final 
segmentation result. The experimental in section 3.1 will demonstrate that the selection of  can 
be flexible in a large interval without greatly influence in the segmentation accuracy. An example 
of malignant melanoma is shown in Fig.1(a). Fig.1(b) gives the clustering map output from the 
AMS. 
 
2.2 Iterative Cluster Pruning 

After the initial AMS, there are still hundreds or thousands clusters left. Therefore a maximal 
similarity based region merging algorithm (MSRM) is carried out on the analysis of colour 
histogram. This method is adaptive to the content of the input image and avoids the problem of a 
preset threshold in advance [8]. So it is appropriate for a large variation of natural skin pigment 
across various skin tumors.  

We quantize each RGB channel into 16 bins and therefore obtain a colour histogram of 

 bins for each region. Then Bhattacharyya coefficient  

is  used  to  describe  the  similarity  between  regions    and  ,  where   and   are the  
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Fig.1: An example of the segmentation of real skin image. (a) Input Image. (b) 1st segmentation map after AMS. (c) 2nd 
segmentation map after MSRM. (d) Final segmentation map. (e) Segmented borders overlaid on the original image. 

quantized colour histograms, and the superscript  represents the element inside them. Two 
similar regions therefore result in similar colour histograms, and hence have a higher 
Bhattacharyya coefficient  between them. 

Suppose  is a group set of clustering regions output from the AMS step, a set of the adjacent 
regions  (u is the number of adjacent regions of R) is formed for each 

. And for each , another set of adjacent regions  (v is the 
number of adjacent regions of ) is constructed. The similarity between region  and its adjacent 
regions can be calculated according to the following merging rule: 

                           (2) 

which means that the selected region R will be merged with its adjacent region  only if the 
similarity  is the maximal one among all the similarities within . Fig.1(c) shows 
the 2nd segmentation map after the MSRM. 

2.3 Kernel K-means Clustering in Colour Feature Space 

The weighted kernel k-means [8] is introduced as the last step to assign the remaining clusters to 
normal skin or pigmented lesion according to their RGB colour values. The objective function is 
defined as:  

 

                                                                                               (3) 

 

where  and Y are the colour vectors for two different clusters output from MSRM, and these two 
clusters are assigned to the same class  in kernel k-means step.  and  are the weights 
standing for the relative portion of the total number of points inside cluster  and cluster  
respectively. Fig.1(d) shows the final segmentation result after clustering and Fig.1(e) outlines the 
border over the original image. 

3. Experimental Results  
The proposed segmentation framework is validated on 113 sets of real skin data: 74 from our own 
dataset captured at Frenchay hospital and 39 sets of public dataset downloaded from Dermatology 
Image Atlas [9]. Throughout the experiments, manual segmentations given by dermatologists are 
used as ground truth for the performance evaluation. The Tanimoto coefficient 

is  used  to  qualify  the  accuracy,  where    is  the  cluster  index  represents  
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Fig.2: Sensitivity of k. (a) Overlapping Coefficient  of  range from [20 500] for normal skin (blue) and pigmented 

lesion (green). (b) Number of remaining modes (blue) and computation time (green) plot together. Vertical axes in the left 
and right represent mode numbers and seconds. 

 

 
Fig.3: (a) Change of number of clusters with the increase of iteration number. (b) Change of maximum 

colour variation with the increase of iteration number. 

skin/lesion,  denotes the number of pixels assigned to skin/lesion by ground truth and 
automated segmentation simultaneously.  and  are the numbers of pixels of skin/lesion for 
ground truth and computed segmentation respectively. 

3.1 Parameter Selection 

3.1.1 Sensitivity of k-Nearest-Neighbour 

We randomly selected images and change the variable   ranging from 20 to 500 to evaluate the 
algorithm sensitivity to it. Here the image shown in Fig.1(a) is used as an example because the 
colour inside the pigmented lesion greatly varied; and the contrast between skin and part of the 
pigmented lesion areas is low. These properties can be the excellent factors for the evaluation of 
the selection of k. 

Fig.2(a) plots the coefficient  corresponding to each  value for both normal skin and 
pigmented lesions. It can be observed that both  give high values and stay constant when  is 
in the range of . A significant decrease occurs thereafter, especially for  larger 
than . When the large number of -nearest-neighbour is introduced the computed window 
size  in the AMS also increases, which may cause unacceptable smoothing in the low contrast 
region; whereas when  is in the range [20 80], the segmentation results are also not very good 
due to the sensitivity to the tiny artefacts caused by small  in applying the AMS. From Fig.2(b) 
it is evident that the running time greatly decreases with the increase of ,  because  fewer  
remaining  clusters  need  to be merged in the cluster pruning step. The  nearest-neighbour is set 
to  in our work by comprehensively considering the accuracy as well as computation 
efficiency. 

3.1.2 MSRM and Kernel k-means 
In theory, a maximal similarity based region merging and weighted kernel -means algorithm 
could be individually applied after AMS until the desired clustering number is achieved. 
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However, we apply both methods in order to avoid the drawbacks of each technique, and make 
them complement each other. 
The maximal similarity based region merging algorithm utilizes the "max" operator which is 
sensitive to outliers and therefore may result in excessive merging with the increase in the number 
of iteration; whereas kernel -means is unsuitable for the large images, as the kernel matrix 
makes the method inefficient for a standard PC due to the memory limitation. Taking the same 
image in Fig.1 as an example, Fig.3 plots the cluster number and the largest condition number of 
the covariance matrix within the same cluster in MSRM for each iteration. With an increase in 
iterations, the number of remaining clusters decreases while the largest condition number 
increases exponentially. From 7th iteration, the growth of largest condition number starts to 
change at a significant pace between two successive iterations, which means excessive merging 
might take place. In order to prevent the risk of overly merging, region merging stops when the 
number of remaining clusters reaches or is less than 0.25 times the number of clusters obtained 
from the AMS. 

3.2 Performance Evaluation 
In this experiment, we investigate the performance of the proposed approach by comparing it with 
four state-of-art segmentation techniques, including double threshold, fuzzy c-means, N-cut 
algorithm and active contour [1][2][10][11]. The resultant segmentations for eight randomly 
selected images are shown in Fig.4, and the statistics for the whole 113 sets of images are given 
in Table.1. It can be observed that our segmentation scheme gives the highest average coefficient 

 and lowest standard deviation of lesion. This demonstrates that the proposed segmentation 
scheme is more accurate as well as consistent in the segmentation of skin lesions. Moreover, the 
proposed approach performs well on both our own and public datasets. But we also noticed that 
the only image to fail using our method is associated with very strong specular artefacts inside, 
and none of the other methods could provide reliable segmentation either. 
 

 

 
Fig.4: Eight example images: top row shows the images in our dataset, bottom row are the images from public 
dataset. Ground truth (black), double threshold (blue), fuzzy c-means (cyan), N-cut (white), active contour 
(magenta), our method with colour space only (green), and our method with colour-spatial space (red). 

 

Algorithms Ave.  of 
lesion 

STD of  Worst  of 
lesion 

Failed NO. 

Double threshold 0.7426 0.1634 0.3781 5 
Fuzzy C-means  0.8018 0.1117 0.4932 5 

N-Cut  0.7614 0.1574 0.3290 8 
Active contour  0.8216 0.1084 0.5138 3 

Colour space only  0.8112 0.1138 0.4754 4 
Spatial-Colour space 0.8523 0.0513 0.7451 1 

Table 1: Average and standard deviation of skin lesion for 113 test images. 
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4. Conclusions 
This paper presents an automated skin lesion segmentation approach to separate pigmented 
lesions from normal skin. In the comparison with four other state-of-art algorithms, the approach 
proposed gives the highest average overlapping coefficient  with lowest standard deviation. 
Moreover, as the adaptive mean-shift associates the spatial-colour coherence and groups 
neighbouring pixels to the close cluster in spite of the large local colour variations, spatial 
information proves helpful in improving the segmentation by increasing the accuracy from 
81.12% to 85.23% as well as halving the deviation from 11.38% to 5.13%. 
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