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Abstract

Having ground truth is critical for evaluating segmentation algorithms and finding
the ground truth remains a hard problem. In this paper, three methods to estimate the
ground truth for skin lesion segmentation using multiple manual results collected from
different experts are proposed and compared. We also analyze the manual segmentations
and discuss how to use them more effectively. We conclude that a voting policy produces
a slightly better ground truth than the other two optimization based approaches. We pro-
pose that a better ground truth should take into account different styles of segmentations.

1 Introduction

Segmentation evaluation can be categorized into two groups: supervised and unsupervised
evaluation, depending on whether the method utilizes a priori knowledge[3, 7]. Here we are
only concerned with supervised evaluation which is widely used in medical image research.
It computes the difference between the ground truth and a segmentation result using a given
evaluation metric. Much effort is spent on the design of the metrics[1, 7]. However, there
is the interesting question of how to obtain the ground truth against which the metrics are
calculated. This is always a difficult issue to tackle and there have been few investigations
of it. The most common method is to use an expert’s manual segmentation and declare
that as the ground truth [5]. A single expert’s segmentation is likely to be subject to that
expert’s bias, hence it is proposed to make several manual segmentations for one image by
different people[7] and the ground truth is derived from these results. For example, Yuan et
al.[8] used the average contour of three dermatologists as the ground truth; we previously [2]
considered the ground truth as that agreed by at least half of the experts. However, it is
worth questioning whether these simple ways of combining multiple segmentations produce
a good quality ground truth; are there more appropriate ways to provide the ground truth?
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This article is the first 1) to propose and compare three different ways to derive the ground
truth and 2) to categorize the manual segmentations into different groups.

2 Methods for ground truth estimation

Some notations used in the paper are as following:
Manuali j(x): the manual segmentation of the i

th image drawn by the j
th of J experts at pixel x

GTi(x): the estimated ground truth of the i
th image at pixel x

I: the number of images; J: the number of manual results
P(Ω): the partition of the image Ω into N regions: {Ωn}N

n=1,
�

N

n=1 Ωn ≡Ω, Ω denotes the image domain, N is the
number of regions (N = 2 for binary-value images).
Both the manual results and the ground truth are represented as binary-valued image. The
foreground has value 1 and the background has value 0. We propose the three methods:

Voting policy

Finding the ground truth based on multiple reference segmentations can be considered as a
labeling problem. The most intuitive way of solving such problems is to use a voting policy
(or label voting [4] ). A voting threshold k is used to determine the classification of each
pixel. The threshold is normally defined as k = J+1

2 and a pixel belongs to the foreground if
and only if at least k people vote for it as the foreground. The binary-valued ground truth is
defined as:
GTi(x) =

�
1 if ∑J

j=1 Manuali j(x)≥ k;
0 otherwise.

Variation Based Method
The second approach minimizes the average variation between the GT and manual results.
This is equivalent to minimizing the average area of the non-overlap region between GTi and
Manuali j. Hence, the energy function is, Ei = ∑J

j=1 ∑N

n=1{∑x
k
∈Ωn

[GTi(xk)−Manuali j(xk)]2}.

Maximal a posteriori probability based method

The third method is based on statistical theory. The probabilistic formulation estimates the
ground truth as a process of finding an optimal partition P(Ω) of the image domain. It
maximizes the a posteriori probability p(P(Ω)) based on a set of manual results. Simply
speaking, the ground truth should be the segmentation that makes all the manual results most
probable. As a result, the a posteriori probability function has the form:

p(Mi{1,...,J}|P) = p(Manuali{1,...,J}|Ω1,Ω2, . . . ,ΩN) =
N

∏
n=1

pin(Manuali{1,...,J}|Ωn) =
N

∏
n=1

∏
x∈Ωn

pin(x). (1)

Here, pin is defined as the probability of a pixel selected as region n by J manual results for
the i

th image: pin(x) = 1
J

∑J

j=1 Manuali j(x). This model assumes that 1) the medical experts
derive their segmentations of the same image independently from one another and 2) the
segmentation at each pixel is independent. The same assumption appears in STAPLE [6].

3 Experiments on ground truth estimation

Our goal is to estimate and compare the ground truth using the 3 criteria different approaches
described in the section 2. The 50 test images we used are randomly selected from our lesion
data-base. Their manual segmentations are obtained by 8 dermatologists from the Dermatol-
ogy department of the University of Edinburgh who directly draw the lesion boundary on the
colour image displayed in Adobe Photoshop CS3 using a Wacom Clintiq 12WX Interactive
pen tablet.

To evaluate and compare the ground truth derived from different approaches, a quanti-
tative metric XOR that measures the difference between the ground truth and the manual
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results is used. For the i
th lesion data (i = 1, . . .,50), the corresponding average XORi mea-

sure is: XORi = 1
J

∑J

j=1
Area(GTi

�
Manuali j )

Area(GTi+Manuali j )
, ranging from 0 (best) to 1 (worst).

�
denotes exclusive-OR

and gives the pixels for which GTi and Manuali j disagree; + means union. The smaller the
XOR, the closer the ground truth is to the manual results.

3.1 The best voting threshold

For the voting method, it is interesting to find out whether the voting threshold k = J+1
2 is

the best option. Hence, we compute the GT using different threshold values k for different
numbers of manual results (J). The XOR measure (mean±standard deviation) comparing
the GT against its corresponding manual results is shown in the left of Table 1 (the smallest
XOR measures are highlighted in red). It shows that the best estimation of the ground truth
is determined when using the voting method with k = J+1

2 . Also, the XOR decreases when
the reducing number of the manual results, which reflects the reduced variation among the
dermatologists.

XOR measure (×100)

Voting Threshold (k) Methods

Manual(J) 3 4 5 6 Voting Prob Diff STAPLE [6]
8 6.70±3.90 6.17±3.62 6.24±3.80 6.92±4.29 6.17±3.62 6.20±3.59 6.20±3.57 6.38±3.76
7 5.46±4.13 5.19±3.87 5.59±4.16 6.82±4.96 5.19±3.87 5.20±3.85 5.21±3.87 6.23±3.69
6 4.59±4.27 4.66±4.39 5.56±5.17 4.59±4.27 4.59±4.26 4.60±4.23 6.39±3.95
5 3.52±3.89 4.03±4.48 3.52±3.89 3.52±3.89 3.52±3.89 6.18±3.61

Table 1: Left: Average segmentation error rates and their standard deviations; Right: Com-
parison between different methods

3.2 The best ground truth estimation method

We compare the ground truth computed by different approaches using the same evaluation
metric XOR. The results are shown in Table 1 (right). According to the XOR measure, the
voting method gives the smallest XOR compared to the other two estimation methods. How-
ever, considering the range of values in the table, there is no fundamental difference between
the three methods. We also compare STAPLE [6] to our 3 algorithms and conclude that
its ground truth is worse under the XOR criterion. However, STAPLE optimizes a different
criterion so this comparison is not quite fair. We also implemented another dissimilarity
measure called Pratt’s Figure Of Merit (FOM) which stood out in comparison with five other
supervised evaluation criteria for segmentation results and proved to be most effective in a
comparison study conducted by Chabrier et al. [1]. It corresponds to an empirical contour
distance between the ground truth and the manual results. The additional test results confirm
the conclusion obtained by XOR measure.

There are big variations between the manual results given by different people for the
same data. This can be explained by both a difference in the segmentation policies, as
well as randomness. Take the lesion segmentation problem for example: some dermatol-
ogists only draw the boundary along the lesion edge, while others extend the lesion region
a little bit more onto the adjacent skin region. This can be considered as a segmentation
policy difference. In addition, there are different opinions on the importance of finding the
exact lesion boundary. This leads to different attitudes when people perform the manual
segmentation. For some of them, locating a general lesion region is necessary for a good
diagnosis. Hence, they pay less effort to the exact edge details; while others might pay a

103



4 AUTHORS: X LI et al.

great deal of attention to drawing a very precise pixel-by-pixel boundary. Given the aim of
comparing computer-based segmentations against the ground truth, it is more reasonable to
use the ground truth which has the more accurate boundary. Therefore, we question if it is
appropriate to treat all manual segmentation results equally rather than, for example, using
a weighting policy according to their performances. For instance, STAPLE [6] treats each
manual segmentation differently according to their performance parameters estimated using
EM algorithm. But first, we need to prove that there does exist different segmentation styles.
We hypothesize that there are two patterns of manual results. Segmentations that have finer
details along the boundary should be comparatively more detailed, while less careful seg-
mentations tend to have a more compact lesion region. In this context, we categorize the
manual results into two patterns (detailed vs compact) based on the compactness measure-
ment defined as the ratio of the area of a circle (the most compact shape) having the same

perimeter to the area of the shape, compactness j =
perimeter

2
j

4π×area j
. For each manual segmenta-

tion, a compactness value is assigned. There are J manual results from different humans as
Compactness(Manuali j), i = 1, . . . ,N, j = 1, . . . ,J. Based on this value, J manual resources
could be categorized into two patterns by kmeans(k = 2).

3.3 Experiments

For 30 randomly selected test images, one dermatologist repeated the manual segmentation
for 5 times on the images of the same lesion. Two trials were on the original orientation,
while the other three are rotated clockwise by 90, 180, 270 degrees, respectively. As a
result, we obtain 5 manual segmentations for each lesion image. The comparison results are
shown in Table 2. The first row demonstrates the comparison result between the 2 non-

Measures (×100) XOR FOM [1]

Intra
No rotation (2 samples) 6.33 15.66

Rotation (4 samples) 5.80 16.67

Inter Other dermatologist (7 samples) 8.07 12.39

Table 2: Intra and Inter comparison

rotated segmentations from the same person. The second row compares the results drawn
by the same person but on 4 images rotated every 90 degrees. They can be considered as
the intra-person comparison since they are given by the same person and they reflect the
randomness measure. The third row is the comparison results between different people. As
it can be seen, the intra-differences are relatively small compared to the inter-difference.
Hence, we hypothesize that the segmentation policy is the main factor that influences the
segmentation rather than the randomness and slightly different segmentation policies lead to
slightly different segmentations.

We find the pattern of the manual results by analyzing the compactness values of all the
manual segmentations (50×8). For each image, the compactness of the 8 manual segmen-
tations is calculated and categorized into two groups by kmeans and assigned with a class
label (e.g., 1 for compact, 2 for detailed). Each dermatologist has a corresponding class vec-
tor recording how compactly they draw the lesion boundary over the 50 lesions. The mean
and the standard deviation of the class label over the 50 lesions are shown in Table 3 (left),
as well as the counts of the compact segmentation for each dermatologist.

The table shows 1) the dermatologists are reasonably consistent according to the stan-
dard deviation value. This means each dermatologist obeys the same rule when doing the
manual segmentation. 2) There exist two patterns of segmentations according to the obvious
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Compactness Performance(STAPLE [6])

Doctor counts for compact (out of 50) mean group label std groups precision specificity
1 26 1.48 0.50 detailed 0.9379 small 0.9890 big
2 37 1.26 0.44 compact 0.9578 big 0.9647 small
3 10 1.80 0.40 detailed 0.8417 small 0.9904 big
4 24 1.52 0.50 detailed 0.9095 small 0.9924 big
5 47 1.06 0.24 compact 0.9466 big 0.9794 small
6 35 1.32 0.47 compact 0.9437 big 0.9597 small
7 43 1.16 0.37 compact 0.9620 big 0.9821 small
8 41 1.18 0.39 compact 0.9220 small 0.9828 small

Table 3: Patterns of detailed versus compact segmentations

difference of the mean compactness. To get an idea of how well-separated the resulting clus-
ters are, the silhouette values for each person using the cluster indices output from kmeans

are calculated. The silhouette is a measure showing how close each point in one cluster is to
points in the neighboring clusters. This measure ranges from +1, indicating points that are
very distant from neighboring clusters, through 0, indicating points that are not distinctly in
one cluster or another, to -1, indicating points that are probably assigned to the wrong clus-
ter. The average value for the detailed group is 0.69 and 0.86 for the compact group. As can
be seen, both clusters ’detailed’ and ’compact’ have measures significantly above 0, so the
hypothesis of two segmentation patterns is confirmed. The above results are echoed by the
performance parameter of each doctor from the STAPLE algorithm [6], as shown in Table 3
(right). The ones giving ’compact’ segmentations normally have bigger precision (percent-
age of unhealthy skin area that is identified as lesion) and smaller specificity(percentage of
healthy skin that is identified as skin) as they tend to include more tissue into the lesion area.
The performance parameters (precision and specificity) are categorized into ’big’ and ’small’
groups using kmeans.

4 Conclusion

Based on the experiments with the manual segmentation results for lesion images, we con-
clude:
1 - computing the ground truth with the voting policy method is simple and effective and
produces slightly better results compared to two other approaches based on optimization,
although there is no significant difference between the three methods.
2 - It is reasonable to use k = (J +1)/2 as the voting threshold.
3 - There are generally two clusters of manual segmentations due to different segmentation
policies. Hence, it would be reasonable to treat each cluster differently when computing the
ground truth. In the future, we plan to investigate how to exploit this observation to produce
better ground truth.
4 - We have also compared STAPLE [6] to our 3 algorithms and concluded that its ground
truth is worse under the XOR criterion. However, STAPLE optimizes a different criterion and
weights segmentations depending on the estimated performance level, so this comparison is
not quite fair. In another paper, we will present results that demonstrate an improvement on
STAPLE on a common criterion.
5 - The independence assumption of individual experts of method 2 needs further verifica-
tion. Pixel label independence should be reconsidered in eqn 1, e.g., by introducing Markov
random field modeling the relationship between each pixel and its neighbors.
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