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Abstract

Many medical image analysis algorithms make assumptions concerning the image
formation process, the structure of the intensity histogram, or other statistical properties
of the input data. Application of such algorithms to image data that do not fit these
assumptions will produce unreliable results. This paper describes a technique for the
automatic identification of images that do not have histogram structure consistent with
that expected. The approach is based upon a component analysis followed by statistical
testing. Experiments validate its use in the identification of quantisation problems and
unexpected image structure. It is intended that this test will form one component of a
quality control assessment, to aid in the use of sophisticated statistical image analysis
software by non-expert users.

1 Introduction

Many complex image processing techniques, such as segmentation, registration and para-
metric image generation, have been shown to have utility in clinical applications. However,
these techniques are always based on specific assumptions about the image formation pro-
cess, the structure of the intensity histogram, or other statistical properties of the images.
Considerable insight on the part of the end users may be required in order to avoid inappro-
priate application of such techniques to input data that do not fit these assumptions. Although
a basic level of training with regard to loading data and executing analysis chains is common,
it is generally not practical to provide adequate levels of training to end-users to enable them
to assess the numerical or statistical stability of an algorithmic process on specific data. This
can lead to inappropriate use of software and invalid research conclusions. Even the most
commonly used packages, used in well funded studies, can be seen to have generated outputs
which are quite clearly suspect [3]. To our knowledge there has been little effort expended
towards solving such problems.

For CT and MR images, the DICOM header file may be used to check acquisition pa-
rameters such as temporal resolution, spatial resolution, weighting factors, and the presence
or absence of contrast enhancements. We can also perform automatic data quality assess-
ment prior to the main analysis (such as signal-to-noise checks [5]). However, such simple
checks may not suffice to identify all possible image quality issues. In addition, the goal of
automatic quality assessment software should be to provide end users with useful feedback
and possible solutions when an input dataset fails a quality check.
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Here, we use a histogram-based model of the data to ensure the valid use of statistical
approaches. Specifically, we train the algorithm using a variety of compatible images. Our
approach is based on fitting a combination of density functions to multiple independent sub-
samples of data. This model includes components for both pure tissue and partial volume
voxels. Fitting parameters are updated using Bayes theory [1] which is used to estimate the
components for an independent components analysis (ICA).

2 Algorithm

Training phase: The input image used for training (e.g. that shown in Fig. 1) is divided
into J non-overlapping windows of equal size. This gives J different data histograms f;
(j=1,2,...,J) to which a unique histogram model is fitted. The model consists of / com-
ponents (i = 1,2,...,1) where each component is a density function p(g|v;) defined based
on knowledge of the corresponding tissues. While the tissue parameters are identical for all
histograms and are learnt through the optimisation of a global cost function, each histogram
has specific weighting parameters ¢;; which are updated using Bayes theory.
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Figure 1: An example partial volume model for two pure tissues. Pure tissues have Gaussian
distributions (dashed), while mixtures of tissues take form of triangular distributions con-
volved with a Gaussian (dotted). These are summed to give the overall distribution (solid).

The histograms are modelled using the approach equivalent to that described by Santago
and Gage [6]. Their model consists of a delta function representing each pure tissue, and a
uniform distribution between each pair of pure tissues that share a common boundary (see
Fig. 1). Both types of distributions are convolved with a noise distribution which is assumed
to be Gaussian. Therefore, pure tissues are represented by (1/v/27c)exp|[—(g — u)?/202].
We further refine the Santago-Gage model by splitting partial volume distributions into com-
plementary pairs of triangular distributions, representing the volumetric contribution of each
pure tissue to the partial volume voxel. If the triangular distribution is defined using the
line equation y = kx + ¢, then its convolution with the Gaussian distribution is given by
fab(kt +¢)(1/v2ro)exp|[—(g —1)?/20?|dt. Note that the mean parameter has no effect on
the convolution process [3], and, the integral gives

c —a —b)? —a)?
D e ety - A e 2 ey o)

The parameters a and b represent the non-zero range of the distribution. It is straightfor-
ward to find the intercept ¢ and the slope k parameters of the line that defines the triangle.
Absolute normalisation is not necessary at this stage and it is sufficient to assume that the
maximum height of the distribution function is constant, or simply is equal to unity. Our

54



RAGHEB ET. AL.: IMAGE QUALITY CHECKING

density functions which are represented by p(g|v;) are equivalent to ICA components. An
example model consists of five Gaussians and eight corresponding triangular density func-
tions between them. This makes four pairs of (a,b) together with an identical ¢ for all
components. However, as parameter b for each range is identical to parameter a for the
neighbouring range, six parameters are sufficient to account for all the model components.
These are the five mean parameters of the five Gaussians plus the ¢ parameter. It is sufficient
to set initial values to five equal partitions of the widest existing histogram range.

The next step is to determine all weighting parameters ;; for histograms f; and com-
ponents p(g|v;) from the EM algorithm. We approximate our data histogram as a linear
combination of all density f functions defined so that f; ~ Y ;{ci;p(g|vi)}. The process of
estimating the weighting parameters is iterative with &; = ¥, { f¢;P(vi|g)}. Probabilities are
computed using the density functions and current weighting parameters ¢;;. Specifically

P(vilg) = ajp(glvi) /Y {oujp(glvi)} (2)

The initial values used are &;; = 1. The equations are iterated until the parameters converge,
when o/ i ~ 0jj. Given o it is straightforward to compute the cost function L; for the
histogram f;. The appropriate cost function can be derived from the probability of getting
the observed sample using Poisson assumptions. This results in the conventional likelihood
function L; = — Y., { fy;log f;}. This equation is correct subject to a fixed normalisation of
the model f; =Y ;{a;;jp(g|vi)} (in accordance with use of Extended Maximum Likelihood).
We therefore perform normalisation on each model histogram so that the area under each
model becomes equal to the number of corresponding data points. As this expression is
proportional to the joint probability, the optimisation of this function is valid for parameter
estimation. However, the unknown scale factor makes the measure unsuitable as an absolute
estimate of fit quality (see below). The total cost function when summed over all image
regions is M, =} ;{L;}. This expression is optimised using the downhill simplex method of
Nealder and Meade [4], with restarts in order to avoid local minima.

Test phase: Once an approximate model is obtained, the optimisation process does not
need to be executed again for the test data and estimated model parameters can be stored in
a database. Then, for each new test image, we build J data histograms with specifications
similar to those used in the training phase. Since grey levels stored in image files from
different imaging equipment may have different scales, we apply a scale factor that is varied
in the range [0.5, 2.0] to find the best fit of the input data to the model. Obviously, using the
model histogram specifications some scales may result in overflow or underflow in the data
histograms. These cannot correspond to the best fit and are ignored. A 10% tolerance on the
model histogram range is used during the training phase. To obtain an absolute measure of
similarity, the out-of-fit measure is then computed using the Matusita measure [7, 8] so that

M, = (1/47H) YA aip(glvi)]'* = (fe) Y 3)

where H is the number of bins for each histogram. This can be considered as a 752 test, (i.e.
the \/E values will closely approximate a Gaussian distribution with a ¢ of 1/2).

As the search for the best corresponding scale is an optimisation with one parameter it is
amenable to direct search. We set the scale step to 0.02 and compute the out-of-fit measure
at 76 scales in the range [0.5, 2.0] (this involves no more evaluations than would be expected
if using a conventional optimisation). One may proceed further by interpolating the minima
from a quadratic equation to three points for increased accuracy.
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3 Experiments

The aim 1s to gain parameter stability by obtaining multiple linearly independent examples
of image histograms [2]. When sub-dividing an image into regions there is clearly a possible
trade off between the number of regions and the resulting number of samples in each. We
set the number of bins to 108 and divide each image into 4 by 4 windows which makes 16
corresponding histograms. We trained the model using a single slice from a 3D MR image
of the normal human brain, shown in Fig. 2 (also shown larger in Fig. 1). The algorithm was
converged with an out-of-fit measure at 0.6172.

To study how the out-of-fit measure behaves, we have also set the number of windows
at4, 6,9, 12, 16, 20, 25 and 100. As expected, the larger the number of histograms the
smaller the out-of-fit measure, and so more accurate fits are obtained. Of course, increasing
the number of histograms to some extent is advantageous but having too many histograms
lowers the ability of the model to differentiate between valid and invalid test images.

Valid test data: We tested 9 MR images against the model (see Fig. 2). The results are
listed in Table 1. It is clear from this experiment that the out-of-fit measure in all cases is
close to its value for training data. The deviation from the typical measure value is small for
the whole set. One may also investigate training using several different images and using an
average model. We perform further tests below using different data to evaluate the algorithm.
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Figure 2: Valid MR brain image slices with results given in Table 1; slice numbers from
left-to-right: 10, 11, 12, ..., 18 and 19; the model was trained using slice 12.

slice 10 11 12 13 14 15 16 17 18 19
scale 1.14 1.10 1.12 124 1.18 1.16 120 120 120 1.22
measure  0.67 056 0.51 051 053 055 055 0.60 0.68 0.87

Table 1: Test results on original data (trained using slice 12): rows refer to the image slice
number, scale factor giving the best fit, and the corresponding out-of-fit measure.

Re-scaled test data: One issue of data quality that frequently occurs is that data is
under-quantised during acquisition or following an image conversion for file storage. This
often has negative effects on sophisticated analysis processes, particularly those that involve
data density modelling or require spatial derivatives. Such a process directly modifies the
structure of the image histogram and should be detectable via our quality checking process.
A second experiment was performed in which the images from Fig. 2 were quantised at 32
grey levels, producing gaps in the histograms. Results are shown in Table 2. In comparison
to table 1, the out-of-fit measure is significantly higher, confirming the ability of the proposed
technique to detect this type of artefact.

Invalid test data: To test using some MR images of different imaging parameters or
different tissues, we processed a variety of MR images so that their histograms ranges corre-
spond to the range used during the training (Fig. 3). The results are shown in Table 3. Again,
the out-of-fit measures are significantly higher than those found in Table 1, confirming the
ability of the technique to detect application of an algorithm to invalid image type.
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4 Conclusions

We have identified the problem of use of algorithms on data that is not suitable for such
processing when analysis software is used as a measurement tool. Conventional approaches
to the issue of quality control involve checking imaging parameters or signal to noise. Such
tests are unlikely to identify more subtle problems, particularly when obtaining data from
alternative imaging equipment. Unfortunately, such problems are often difficult to identify
without significant technical knowledge and access to appropriate investigative tools. In
order to deal with this problem we have suggested a supplementary statistical test based
upon the construction of a component model, trained on sub-regions of images known to be
suitable for analysis. We have shown how this technique will identify not only quantisation
effects, but also novel histogram structure arising from different biological structures. '

slice 10 11 12 13 14 15 16 17 18 19
scale 1.005 1.01 1.008 1.01 1.007 1.01 1.01 1.011 1.005 1.24
measure 142 133 1.31 .36 1.35 1.38 1.42 147 1.57 1.79

Table 2: Test results on re-scaled data (trained using slice 12): rows as Table 1.

6

Figure 3: Invalid MR images (coil) with results given in Table 3; from left-to-right: eye,
foot0, footl, hipl, hip2, hip3, shoulder, skin, spine and brain-pd.

image eye foot0 footl hipl hip2 leg shoulder skin spine brain
scale 052 076 054 055 052 052 0.59 0.54 052 0.68
measure  12.5 64 8.3 96 69 138 11.1 11.6 133 99

Table 3: Test results on re-scaled invalid data (trained using slice 12): rows as Table 1.
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