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Abstract

Traumatic brain injury (TBI) is ranked as the fourth highest cause of death in the
developed world. The majority of patients sustain mild TBI, and a significant num-
ber suffer persistent neuropsychological problems. Conventional neuroimaging methods
(CT, MRI) do not reveal abnormalities consistent with the cognitive symptoms. Imag-
ing methods offering prognostic information in acutely injured patients are therefore re-
quired. Here we applied advanced quantitative MRI techniques (T1, T2 mapping and
diffusion tensor MRI) in 24 mild TBI patients and 20 matched controls. We applied a
support vector machine (SVM) to classify the quantitative MRI data. Univariate clas-
sification was ineffective due to overlap between patient and control values, however
multi-parametric classification achieved sensitivity of 88% and specificity of 75%. Fu-
ture work incorporating neuropsychological outcome into SVM training is expected to
improve performance. These results indicate that SVM analysis of multi-parametric MRI
is a promising approach for predicting prognosis following mild TBI.

1 Introduction
Traumatic brain Injury (TBI) is a major cause of death and disability in adults. Each year in
the UK more than 112,000 people are admitted from accident and emergency departments
with a primary diagnosis of TBI [1]. TBI is ranked as the fourth highest cause of death in
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the developed world, and the number of people sustaining head injuries increases yearly [2].
Computed tomography (CT) is used for initial assessment of TBI patients but CT and con-
ventional MR imaging in mild TBI patients often does not correlate with the severity and
longevity of the clinical neurological picture [3]. It has been reported in small cohort studies
of TBI that advanced MRI techniques such as diffusion tensor imaging (DTI) and image re-
laxometry do detect subtle quantitative changes in brain tissue properties [4], but individual
measurements do not have prognostic value in individual patients. In view of these previous
findings we anticipate that combination of a range of quantitative MRI parameters will be
more sensitive in detection of subtle neuronal damage than when using individual parame-
ters. Hence we hypothesised that multi-parametric analysis would offer a better classification
of TBI patients than univariate analysis. In order to test our hypothesis we applied a machine
learning classification method called Support Vector Machines (SVMs).

SVM works by learning the features which differentiate the groups of a dataset. Once
the learning is achieved, the knowledge acquired during the learning can be used to classify
any new data. SVM application to biological problems is increasing due to its high accuracy,
ability to deal with multi-dimensional and large datasets and the high flexibility in modelling
of data from various sources [5].

2 Materials and Methods

2.1 Subjects
A total of 44 subjects were recruited for this study. This comprised 24 mild TBI patients
(GCS, 14-15, mean age 38± 15yrs) and 20 healthy adults (mean age 41± 16yrs) with no
clinical evidence of neurological diseases or prior history of TBI. Scanning for the patient
group was performed within 10 days of injury (mean 4.9, range 1-10 days).

2.2 MR Protocol
All images were acquired on a 3.0T whole body Philips Achieva MR System (Philips Medi-
cal Systems, Best, NL) using an 8-channel SENSE head coil. The protocol was approved by
the local ethical committee and all subjects provided written consent prior to imaging. The
following scans were acquired in each subject.

T1W Imaging: High resolution 3D T1 weighted anatomical scan (MPRAGE, TR/TE =8.1 /
4.6ms, matrix 150x240 with 240 contiguous slices, 1mm slice thickness, in-plane resolution
of 1mm).
T1 Mapping: A fast quantitative T1 measurement using a custom inversion recovery prepared
EPI sequence (TR /TE=15s /24ms, TIR=0.25 to 2.5s in uniform 12 steps, matrix 128x128,
72 axial slices, isotropic 2mm resolution).
T2 Mapping: Quantitative T2 measurement using MSE sequence (TR=4.7s, 8 spin echoes at
20ms spacing, EPI factor 5, matrix 128x128, 72 slices, isotropic 2mm resolution)
Diffusion Tensor Imaging: DTI using SE EPI sequence (SENSE factor 2, TE /TR=71/2524ms,
matrix 128x128, 24 slices, 6 mm thickness and 2mm in-plane resolution, 16 diffusions di-
rections, b values 0 and 1000 smm−2).
B0 Field-map: B0 Field-map (dual echo 3D GRE sequence TR=27ms, TE=2.6 /6.1ms, ma-
trix 128x128x72, 2mm resolution) which was used to correct the spatial distortion in EPI
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Figure 1: Typical images from quantitative data representing the control and patient popula-
tion, Columns 1, 2, 3 and 4 are the T1W, MD, qT2 and qT1 images respectively

based images.

Figure 2: The scatter plot and SVM results in the Frontal Superior region of white matter.
First row represents T1 against T2 and T1 against MD. Second row represents T2 against MD

2.3 Image Analysis
We applied an automatic image analysis method [6] whereby the whole brain is automatically
divided into 16 regions of interest (ROI) for each tissue type. These regions are pairs of
right and left inferior frontal lobe, superior frontal lobe, temporal lobe, temporal-occipital
lobe, occipital lobe, temporal-parietal lobe, parietal lobe and the cerebellum. In brief, the
method uses a standard space brain ROI parcellating the entire brain into 16 chuncks, which
is transformed into subject space based on a multi-step registration using the subject’s high
resolution T1 weighted anatomical scan. Next, the same anatomical scan is segmented into
white matter, grey matter and CSF masks [7] and combined with the brain region template
to generate tissue specific anatomical ROIs which are applied to the quantitative images
under analysis. Multi-spectral analysis using k-means clustering is applied to the regional
quantitative data for removal of partial volume errors in order to improve ROI definitions.
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The algorithm was implemented in MATLAB R2009b (The Mathworks Inc., Natick,
MA, USA) running on a Linux platform using in-house developed routines but incorporated
existing processing methods from the FSL [8] package when appropriate. All segmentation
steps were performed using FSL Segmentation Tool (FAST, [7]). Patients with visible lesions
were excluded from the analysis.

Quantitative T1 maps (qT1) were calculated on a pixel by pixel basis by fitting the ac-
quired data to T1 inversion recovery curve using the standard 3 parameter fit (Mo, flip angle
and T1) while quantitative T2 maps (qT2) were calculated using a 2 parameter (Mo and T2)
monoexponential fit to the acquired data.

DTI data were preprocessed with FDT (FMRIB’s Diffusion Toolbox) [9]. Head move-
ment and eddy currents were corrected using 3D rigid body registration to a reference vol-
ume. Raw DTI data were brain-extracted using FSL BET tool, and mean diffusivity (MD)
images were created by fitting a tensor model to the raw diffusion data using FDT.

The algorithm was then used to automatically determine regional grey and white matter
qT1, qT2, and MD in each of the 16 target ROIs. Finally, the regional mean values for both
grey and white matter were computed in each ROI and used for SVM classification.

2.4 Support Vector Classification of TBI Data
SVM was used to classify the regional mean values computed from qT1, qT2 and MD. Each
subject’s data was divided into the 2 tissue classes with each comprising of 16 x 3 matrices,
representing the 16 ROIs and each of the 3 quantitative MRI parameters. These matrices
were used as input vectors for SVM. Each of the two groups (mild TBI and control) was
divided into 2 mutually exclusive subsets, the training set and the validation set. Selection
was done using the holdout cross validation method; this method randomly divides a given
dataset into 2 equal groups. Training and classification were evaluated on a regional basis for
both white matter (WM) and grey matter (GM) using combinations of qT1 and qT2, qT1 and
MD, qT2 and MD and qT1, qT2 and MD. We compared a number of kernel functions using
sensitivity and specificity analysis, only the radial basis function gave a desirable result. In
view of this finding (no data presented) our implementation used radial basis function.

3 Results and Discussions
Figure (1) shows selections from typical control and patient datasets. Figure (2) shows a
representative scatter plot and SVM results. The scatter plots show that there is significant
overlap between the 2 groups along each axis but that combination of axes reveals some
intra-group relationships. The SVM results on the right hand side of each plots show the
separation between groups. We used sensitivity (True positive) and specificity (True nega-
tive) to measure the performance of SVM. The average sensitivity (and specificity) for white
matter averaged across all the 16 ROIs were 82% (70%) (qT1 vs qT2 and qT1 vs MD), 81%
(73%) (qT2 vs MD) and 83% (68%) (qT1 vs qT2 vs MD) while the average sensitivity (and
specificity) for grey matter averaged across all the 16 ROIs were 80% (75%) (qT1 vs qT2)
87% (79%)(qT1 vs MD), 88% (75%) (qT2 vs MD) and 85% (81%) (qT1 vs qT2 vs MD).
These show that multi parametric analysis using SVM offers a promising tool in to cate-
gorising mild TBI.

Epidemiologically, only approximately half of mild TBI patients manifest ongoing neu-
ropsychological problems related to their injury. In view of this approximately 50% of TBI
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population are expected to be indistinguishable from normal controls and this could cause
misclassification. We believe that this may be a significant contributing factor to the low
specificity of our analysis. Our future work will include follow up studies in order to identify
the mild TBI patients who have fully recovered without any neuropsychological symptoms
which will help us to redefine the groups which could lead to improved specificity.

4 Conclusions
We have shown that a multi-parametric analysis of quantitative MRI data can be used to
separate mild TBI patients from the control group. Our results show that SVM can detect
changes in normal appearing tissues in some patients suffering mild TBI as compared with
the control group. These changes may represent damage to neuronal tissue and further work
is needed to determine whether this is responsible for the cognitive and affective symptoms
commonly seen following mild head injury, which include memory loss, inability to concen-
trate, irritability and depression
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