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Abstract. The assessment of the degree of steatosis in routine liver biopsies represents an important task in 

different clinical situations, such as alcoholic steatohepatitis, non-alcoholic fatty liver disease, viral hepatitis, and 

evaluation of the viability of the graft in liver transplantation. Despite the advances in imaging techniques, 

microscopic examination remains the gold standard for the assessment of hepatic steatosis. In this study, we 

developed an automated approach for hepatic steatosis assessment in routine liver biopsies stained with 

Hematoxylin-Eosin (HE) from patients affected by hepatitis C. We performed a multi-step procedure by using a 

clustering technique, a two-levels thresholding and three shape parameters - solidity, elongation and roughness - 

to correctly distinguish fat droplets from other not stained objects like sinusoids. Lastly, we validated our results 

comparing them with those obtained by a pathologist via stereological point counting. We found a high agreement 

in the results, with a detection power of 91.01% and a false positive ratio of 4.49%. 

1  Introduction 

Steatosis is characterized by the abnormal accumulation of lipid droplets within the cytoplasm of hepatocytes. 

Extensive fat accumulation occurs in a large number of hepatic disorders: alcoholic steatohepatitis (AFL), related to 

alcohol abuse, and non-alcoholic fatty liver disease (NAFLD), associated to obesity and to metabolic disorders of 

insulin resistance [1,2]. Other clinical conditions characterized by steatosis are viral hepatitis, nutritional disorders 

other than obesity, hepatic ischemia and metabolic or endocrine disorders. Moreover, steatosis is the most prevalent 

condition underlying in liver grafts available for liver transplantation; in this setting, the assignment of moderately 

steatotic grafts remains controversial [3], particularly when associated with additional risk factors, such as prolonged 

ischemia or advanced donor age. 

Considering that accurate quantification of hepatic fat is not provided by imaging studies, microscopic examination 

remains the gold standard. Up to now different methods for the estimation of liver steatosis have been proposed: 

semiquantitative evaluation, manual stereological techniques like point counting, image thresholding and automated 

morphometry. Semiquantitative analysis appears to overemphasize the amount of liver steatosis and it is influenced 

by large inter- and intra-observer variations [4]. Point counting is simple, very reliable, and has a good reproducibility 

[5]; however it is time consuming and labour intensive. Image analysis thresholding requires the manual exclusion of 

all those structures that – together with fat droplets – are not stained by Hematoxylin-Eosin (HE), or the use of special 

stains (i.e. osmium tetroxide), not used in routine biopsy. An automated morphometric method seems more suitable. 

Recently some first approaches using morphological operators such as erosion and dilation, and shape features like 

circularity and eccentricity, have been proposed [6,7,8]; however deeper analysis and validation are still needed. In 

this study we developed an automated approach for hepatic steatosis assessment in routine liver biopsies stained with 

HE from patients with hepatitis C. We also evaluated the accuracy of our method via stereological point counting. 

2  Materials and methods  

Four routine liver biopsy specimens from patients with chronic hepatitis C from the archives of the Department of 

Pathology of Niguarda Hospital – Milan were evaluated. All specimens were paraffin embedded, and 4 µm thick 

sections were stained with HE. A light microscope (Axioplan-Zeiss), equipped with a digital camera, an auto-

focusing software and a motorized stage, was used to image capturing and meander scanning. In order to examine the 

microscopic fields, a 20x objective was used to obtain, together with the camera magnification, images having a 

0.264 µm resolution. Each slice was acquired as a grid of tiles, by using a 10% overlap between contiguous tiles, in 

order to correctly stitch them and to completely include each fat droplet in at least one tile. A slice is a collection of 

about 100 tiles of 2584 x 1572 pixels in size. 

2.1 Overview of the method 

Lipid droplets can be considered in digital images as blobs of not stained (white) pixels having a quite circular shape. 

However, not all the pixels in vesicles are completely white, but they can change from white to pink (the background 
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colour) or to a grey-blue colour (as a consequence of the refraction of the light on the fat tissue inside vesicles). 

Moreover, the possible different brightness during the acquisition procedure should be taken into account. Lastly, 

there are other structures that show the same chromatic characteristics of lipid vesicles and that must be discarded 

(i.e. sinusoids, portal veins and centrilobular veins). In order to consider all these factors that are involved during 

image analysis, we performed the following multi-step procedure: firstly pixels of not stained objects are identified by 

a clustering procedure followed by a two-level thresholding, then blobs in the two binary masks obtained according to 

the different thresholds are analyzed using shape-related features, in order to recognize fat droplets. 

2.2 Colour clustering 

To minimize the impact of different brightness conditions, in order to detect which pixels must be marked as “white”, 

we used a clustering technique that automatically fixes the threshold according to the characteristics of the image. We 

applied the algorithm described by Uchimaya and Arbib [9] for colour image segmentation using a competitive 

learning clustering. According to the chromatic characteristics of the samples, the pixels are grouped around three 

reasonably well-defined colours, respectively corresponding to white (the portion surrounding the tissue in the slice, 

the lipid vesicles, the portal spaces and the lumen of sinusoids), to light red (cytoplasm of hepatocytes) and to dark 

violet (nuclei of hepatocytes). The clustering algorithm identifies three values (C1, C2, C3) that correspond to the 

barycentres of the three clusters in the RGB space (i.e. C1=[R1,G1,B1], and so on). Each pixel of the image is 

associated to the cluster to which it is closest in l2 metric. White pixels are the ones associated to C1. Distances 

between C1, C2 and C3 have been analyzed to correctly detect tiles with no or few material. In the first case all clusters 

are related to white pixels, therefore distances are close to zero. In this case the tile was discarded. In the second case 

it may happen that two clusters (C1 and C2) are related to white pixels and just the remaining one to the tissue (both 

pink background and darker nuclei). In this case a new clustering using only two classes was performed. 

2.3 Two-levels thresholding and morphological processing 

The clustering procedure gave us a binary mask, M, that marks all the “white” pixels, i.e. those associated with the 

first cluster. The starting RGB image was then modified as follows: all pixels where M was equal 1 and having colour 

with a saturation close to zero or a hue turned on blue more than on pink/red was saturated to white (these are some 

of the pixels inside the large fat droplets, cf. Fig 1b). 

Then the resulting image was converted from RGB to greyscale and we fixed two grey level thresholds. The first one, 

τ1, was computed as the mean value of the greyscale conversions of C1 and C2. The second one, τ2, was 

experimentally set as τ1+20. These thresholds were used to compute two new binary masks, M1 and M2, containing 

only those pixels of the greyscale image that were lighter than τ1 and τ2, and where M was equal to 1. M1 is similar to 

M, since τ1 is the “equivalent threshold”, in the greyscale space, of the starting clustering. On the other side, M2 is 

included in M1 (i.e. M2(x,y)=1 implies M1(x,y)=1), since it contains only pixels where the grey level is higher than a 

higher threshold (i.e. lighter pixels, if considering 255 as white and 0 as black). 

M1 and M2 were then modified by applying the following morphological operators [10]: 1) Opening (erosion 

followed by dilation), using a circular filter having a 2 pixels (about 0,5 µm) radius. 2) Deletion of small objects (area 

< 50 pixels, equal to about 3 µm
2
). 3) Closure (dilation followed by erosion), using a circular filter having a 2 pixels 

radius (about 0,5 µm). 4) Filling of the detected objects. 

We used these two masks in order to disjoin droplets of fat from other objects, as described in the following sections. 

2.4 Evaluating objects’ shape 

We assigned a global shape index to each object contained in M1 and M2: the index “2” is related to objects with a 

good shape, the index “1” to objects with fairly good shape and the index “0” to objects without a suitable shape. 

This global shape index was evaluated using three parameters:  

1. Solidity: the area of the object divided by the one of its convex hull. 

2. Elongation: the ratio between the minor and the major axis of an ellipse having the same normalized second 

central moments of the object; it is a measure of the length-width relationship. 

3. Roughness: the ratio between the perimeter of the object and the perimeter of its convex hull (a shape 

measure that quantifies the jaggedness of an object's edges). 
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We empirically fixed, analyzing a set of twenty images, two sets of thresholds, and we assigned: i) global shape index 

“2” to objects with solidity>0.85, elongation>0.6 and roughness <1.2; ii) global shape index “1” to other objects with 

solidity>0.65, elongation>0.45 and roughness<1.4, and iii) global shape index “0” to the remaining objects. 

2.5 Lipid droplets recognition 

Since M2 is strictly included in M1, the same relation holds for each object in M2: it is included in an object of M1. By 

this way, for each object in M2 there is exactly one object in M1 containing it. We will call this object “parent”. In 

turn each object in M1 may have 0, 1 or more objects of M2 contained in it. We will call these objects “sons”. 

We now performed, in this order, the following operations: 

1. From M1 all objects that do not have any son were deleted. This rule was used to delete blobs in M2 that did 

not contain a white core, so to avoid computing as fat droplets low stained background portions.  

2. Each one of the remaining objects, in M1, having global shape index “2” and an area larger than 150 pixels 

(around 10 µm
2
), was replaced by its convex hull, and it was stored as fat vesicle. These are the most regularly shaped 

fat droplets (Fig. 1, droplets depicted in cyan). 

3. All objects in M2 with a parent having shape index equal to “0” were deleted, and their parent was stored as 

sinusoid. This rule avoided classifying regular and whiter portions of sinusoids as small fat droplets (Fig. 2a). 

4. All objects in M2 having a parent already stored as fat vesicle or as sinusoid were deleted, and all objects 

having global shape index equal to “0” were stored as sinusoids (Fig. 1, sinusoids depicted in red). This rule avoided 

double detections from the two masks.  

5. The remaining objects in M2 – i.e. those having shape bigger then 0 and not included in an already detected 

parent - were also stored as fat vesicles (Fig. 1, droplets depicted in blue).  

6. Lastly, large epathic arteries, portal veins and centrilobular veins, and tiles regions with no tissue were 

removed with an upper area threshold, according to their dimension, since they are larger than the largest fat vesicle 

(Fig. 2c). This threshold was set as 50,000 pixels (equal to about 3,500 µm
2
, or to a circular blob with radius 33 µm, 

where the largest droplets have radius close to 20 µm).  

2.6 Stitching different tiles 

In order to analyze the whole slice, the last step consisted in merging the results obtained by the analysis of each 

single tile. In each tile we discarded all detected vesicles touching one of the tile boundaries, in order to avoid partial 

detections. For vesicles included in the overlapping region, we observed if they were twice recognized in two 

adjacent tiles. If the answer was yes we retained only the vesicles recognized in the right or lower tile. 

     

Figure 1. In cyan large and regular shaped droplets (detected by rule 2), in blue other droplets (detected by rule 5), in 

red sinusoids (detected by rule 3 and 4). (a) Objects identified in a whole tile. (b) A particular from another tile. In 

the two upper large fat droplets it is visible how pixels inside may be grey-blue instead of white. It is also visible how 

the detection of the smallest objects can be somehow inaccurate, as we are close to the resolution limit. 

a b 
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Figure 2. Inner blue lines are the boundaries of the objects in M2, outer black lines of the objects in M1 (a) Two 

sinusoids. In this case, if using only the M2 mask, some false droplets, marked with a “+”, would have been detected. 

They have been discarded because they was recognized, thanks to rule 3, as parts of a sinusoid. The object marked 

with a “◊” would anyway have been discarded as it has irregular shape (b) It is visible how using M1 the two bigger 

droplets are not disjoined, while M2 gives the correct detection. It was achieved thanks to rule 5, as the parent object 

in M1 had not got a shape good enough to be detected by rule 1 nor an enough bad shape to activate rule 3 (c) A tile 

with a centrilobular vein, marked with a black arrow.  

3  Validation  

We randomly selected 15 tile images from three different slices for validation, excluding the 20 images already used 

for thresholds assessing and all the images with no or very few tissue inside. A counting grid with approximately 600 

points, that corresponds to a distance of about 22 µm between adjacent points, was superimposed on each tile. For 

each point of the grid the classification achieved by our algorithm was computed, using three possible outputs: 1) 

steatosis, if the point falls inside a lipid droplet, 2) background, if it falls in background or in a sinusoid, and 3) 

external, if it falls in regions with no tissue or inside portal spaces (detected white objects whose area is bigger than 

the upper area threshold). A pathologist manually did the same, using the same grid of points. Since our algorithm 

does not recognize lipid droplets touching the tile boundaries (they are recognized when analyzing the adjacent tile) 

the pathologist was asked to do the same thing. In all the tiles the steatosis % evaluated by our algorithm was very 

close to the one obtained applying manual point counting. We also achieved a good detection power (that is the 

number of the steatosis points correctly detected by the algorithm over the number of the steatosis points detected by 

the human expert) of 91.01%, with a low false positive ratio (the number of the points wrongly detected as steatosis 

by the algorithm over the number of the points detected as steatosis by the human expert) of 4.49%. Results are 

reported in Table 1 and Table 2. 

 

Table 1 Steatosis % for each tile, via point counting according to our algorithm and to human expert.  

 

 

 

 

Table 2 Confusion matrix. All points of the counting grid of each tile are classified according to how they have been 

marked by the human expert and by the algorithm. From this matrix we achieve a detection power of 91.01% 

(567/(567+56)) and a false positive ratio of 4.49% ((1+27)/(567+56)) 

4  Discussion 

4.1 Clustering, morphological processing and two-levels analysis 

We used colour clustering because, by this way, we can correctly classify the grey-blue pixels inside large lipid 

droplets as white pixels instead of as background pixels, since in the RGB space they are more distant from the 

Tile N. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean 

Auto 5,36 8,11 4,52 7,33 2,37 5,16 1,29 9,68 3,80 11,94 4,48 30,79 16,83 3,81 9,52 8,33 

Human 5,89 8,61 5,27 7,51 3,16 5,16 0,72 9,88 3,80 13,26 5,37 32,38 17,94 3,33 9,37 8,78 

Human 
 

Auto 
Ext Back Steat 

Ext 1871 0 0 

Back 0 7018 56 

Steat 1 27 567 

a b c 
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background colour (pink) than if they were converted to greyscale. In fact, once they are correctly classified, we have 

to preliminarily saturate them to white, if we want to discard colour information without misclassifying them. The two 

level analysis is needed because anyway lipid droplets pixels and background pixels may have mixed intensity; as a 

consequence, independently from the threshold level we choose, there are pixels that can’t safely be classified in one 

way or in the other one. These mistakes can lead us to errors in white blobs classification: for example, if we choose a 

too high (that means: too white) threshold, a sinusoid can be broken and its fragments can be classified as lipid 

droplets (Fig. 2a), or some lipid droplets can be detected only partially. On the other side, if a lower threshold is 

selected, really close steatosis vesicles can merge (Fig. 2b). As described in section 2.5, with such a two-level 

analysis we were able to analyze together information coming from the grey intensity and information coming from 

the shape of the objects we were recognizing with the two different thresholds. The 20 grey levels difference between 

thresholds is empirical, and could surely be improved with further analysis. 

Morphological processing is another useful task. Opening breaks weakly connected objects. In particular, when 

combined with the second operation (area thresholding), it is useful to delete smaller sinusoids. In fact, since they are 

thin and long, they are firstly broken by opening, and then deleted by area thresholding. Area thresholding also 

deletes circular objects having diameter less than 2 micron. Micro steatosis smaller than this threshold is anyway 

invisible. If we wanted to detect it we should use thinner slices and higher magnification. With our slices and 

magnification factor the objects that are smaller than 50 pixels are more likely light background pixels than vesicles. 

Lastly closure and filling are useful to correctly mark all pixels in vesicles, completing them. 

4.2 Shape descriptors 

Elongation, like eccentricity, is a good shape parameter in order to discard objects having a too high length/width 

ratio. We used elongation, instead of eccentricity (as used in [8]), since it is more directly understandable when 

looking at the images. Anyway there is a fixed relation between these shape descriptors (ecc = √(1-elong
2
) ), therefore 

they are equivalent. Both of them are able to correctly detect shapes only when used with other shape descriptors like 

solidity. In fact they are well suited to classify convex objects, but U-shaped or L-shaped sinusoids may also have 

small elongation (or eccentricity): they are discarded by the solidity threshold, as they are far from convex. 

Roughness is used to discard too jagged objects, since they are more likely small sinusoids or few stained 

background. Anyway, to avoid false deletions, we used a high threshold. Perimeter related shape descriptors are in 

fact less stable than area related descriptors. For this reason we also avoided to use another classical shape descriptor, 

circularity (4π*Area/perimeter
2
), as reported in [7]. Moreover we tested over the twenty tile images used for 

thresholds tuning that circularity would have added few or nothing to the combination of elongation and solidity. 

5  Conclusions and further developments 

In this work we validated the accuracy of the algorithm in steatosis droplet detection. Next steps will be using it on a 

larger set of biopsies (actually just four biopsies were used), thresholds fine tuning and an analysis of the size 

distribution of fat droplets, analyzing how it varies in relation with steatosis %. Another related problem we will try to 

solve is automatic detection of fibrosis regions. 
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