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Abstract. The identification of retinal drusen is important in the diagnosis of Age-Related Macular Degeneration 

(AMD). This is normally undertaken through visual inspection of retinal colour images; a time consuming, 

resource intensive, process. In this paper an automated approach is proposed to support AMD screening. The 

fundamental idea is that instead of detecting the physical existence of drusen in the retina, representative patterns 

of retinal images (with or without drusen) are extracted in the form of histograms. Labelled exemplar histograms 

are then stored in a “case based”. New, “unseen” examples are then classified by comparison with this case base 

and analysed for drusen using a Dynamic Time Warping (DTW) comparison process. Evaluation using the 

proposed approach has produced results that are both interesting and promising.  

1 Introduction 

Age-Related Macular Degeneration (AMD) is the main cause of the elderly blindness in developed countries. A 

study [1], undertaken in the UK, demonstrated that, between June 1987 and April 2002, approximately 17% of the 

participants were diagnosed with AMD; further, more than 95% of these were aged 60 years and above. AMD is 

expected to increase over the coming years. Drusen, yellowish-white sub-retinal deposits located between the retinal 

pigment epithelium (RPE) of the eye and Bruch’s membrane, has been regarded as hallmark of AMD. Identifying 

and quantifying drusen, through examining of patients’ retinal images is essential in diagnosing and staging AMD. 

For instance, the detection of drusen at the very early stage of AMD is critical for effective treatment options but is a 

challenging task due to the variety of drusen in size and shape. A substantial amount of research has been undertaken 

to identify the emergence of drusen through image processing and analysis [2, 3, 4], as well as analysis of 

alphanumeric medical data [1, 5], which has produced good results. An image registration method for aligning pairs 

of retinal images was reported in [6], however, expert intervention is still required. 

 

Histograms have been widely used to represent colour distributions in images. They are considered to be a simple 

way of representing the characteristics of an image in terms of colour distribution within images, and an effective 

representation for identifying objects in images [9]. Much research has been conducted on the use of histogram as a 

medium for image retrieval [7, 8]. Generally, there are two methods of generating histograms: (i) fixed binning and 

(ii) adaptive binning. Fixed binning applies the same numbers and characters of bins
1
 to all images [8], while 

adaptive binning adapts to the actual distribution of colours in images [9, 10]. Adaptive binning histograms are 

considered to represent images more efficiently [11], but are constrained by the number of dissimilarity measures 

available to measure the similarity between histograms. Fixed binning on the other hand can adopt a wider range of 

similarity metrics (such as Euclidean distance). Each bin in fixed binning histograms can be regarded as a vector and 

this makes it possible to apply various machine learning and data mining algorithms to the representation for (say) 

clustering and classification.  

 

In this paper a fixed binning histogram based approach for the automated screening and diagnosis of AMD is 

proposed. The idea is that instead of detecting the physical existence of drusen on the retina, an approach to identify 

and extract representative patterns of retinal images (with or without drusen) using histograms is proposed. The main 

contribution of the approach is that it may serve as a good automated first pass in the screening of retinal images. 

Dynamic Time Warping (DTW), a technique for mapping pairs of time series curves, is used to measure the 

similarities between histograms (and consequently retinal images). 

 

2 Backgrounds 

The diagnosis of AMD is typically undertaken through the inspection of the macula (see Figure 1). AMD is 

classified as being either neovascular (wet) or non-neovascular (dry). Neovascular AMD is less common but is more 

severe than the non-neovascular. The majority of AMD patients who suffer vision loss have the neovascular form of 

the disease. The presence of drusen is expected with advancing age, people of 40 years of age and above can expect 

to have some small drusen. However, the presence of larger and more numerous drusen are recognised as an early 
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sign of AMD. Drusen are often categorised into two types: (i) hard and (ii) soft drusen. Hard drusen have a well 

defined border, while soft drusen have boundaries that often blend into the background. Soft drusen are typically 

associated with AMD. The advance of retinal image acquiring technology, and the establishment of digital fundus 

photography, has triggered research into more accurate techniques in measuring and identifying macular drusen [2].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Colour retinal image with drusen circled. (b) red channel image, (c) green channel image, and (d) blue 

channel image 

Image processing techniques have been widely applied to AMD since the 1990’s. Much of this work was directed at 

retina image analysis to improve the effectiveness of drusen detection. Drusen detection represents a significant 

information technology challenge, and is hampered by a number of  difficulties: (i) illumination that causes non-

uniformity in the captured images, (ii) object recognition within the images, and (iii) the alignment of images during 

“capture” (images do not cover identical parts of the retina). 

 

Notable work on automated detection includes the following. In [2] a background levelling technique was applied to 

fundus retinal images and Focally Increased Auto-Fluorescence (FIAF) to reconstruct the macular background and 

then remove the background variability from the entire image before the segmentation of the images to identify 

drusen. In [12] a semi-automated algorithm for drusen detection and segmentation in retinal optical coherence 

tomography images is described. However, the algorithm in [12] required users to specify the Region of Interest 

(ROI) of the retina image that is to be segmented. The algorithm has successfully been used to detect drusen within a 

short time period, but in certain cases failed to detect small drusen that did not change the curve of the RPE (in some 

cases “false alarms” were generated by mistakenly identifying drusen). 

 

Work on detecting drusen using a histogram-based algorithm has been reported in [3]. The algorithm first enhances a 

given image by using multilevel histogram equalization (MLE), a modified version of the adaptive histogram 

equalization algorithm. Once the image is enhanced, the drusen segmentation takes place. Two thresholds are 

applied, a global and a local threshold. More specifically Otsu’s [13] global thresholding technique was used to carry 

out the thresholding, while a Histogram-based Adaptive Local Threshold (HALT) was used for the local threshold. 

Experiments on a very small dataset of 23 images produced good results. Note also that only the green channel was 

used to represent the images because it is the least effected by illumination. Other work on using histograms for 

drusen detection is reported in [4], where colour histograms are used to enhance the contrast of drusen against 

normal retinal pigment epithelium. Their work [4] would be very helpful during the pre-processing stage of the 

images.  

 

The effectiveness of general histogram based image categorization and retrieval has been empirically measured [7, 

8]. One example of the use of histogram for classifying general images can be found in [8] where fixed binning 

histograms, called a quasi-histogram, are used. In [8] quasi-histograms are generated for different image regions and 

as a state-sequence, rather than a vector. The quasi-histograms are then used in a Markov Chain (MC) process for 

image classification. Good results are produced in comparison to region based histogram technique used with Hidden 

Markov Models (HMM) and Support Vector Machines (SVM). 

2.1 Dynamic Time Warping 

Dynamic time warping (DTW) is a technique for measuring the similarity between two time series sequences. It has 

been most commonly used in time series analysis [14, 15], but can also be applied in other domains. Thus a 

histogram, of the form described above, can be interpreted as a time series. DTW uses a dynamic programming 
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approach to align two time series and then generates a warping path that maps (aligns) the two sequences onto each 

other. To map two time series T and S, of length n and m respectively, where � � ��, ��, … , �� and 	 � 
�, 
�, … , 
� a 

n-by-m matrix will be formed, where the (i
th

, j
th

) grid point corresponds to the alignment or distance between two 

points ti and sj. The warping path, W, is then the set of matrix elements that defines a mapping between T and S, 

defined as � � 
�, 
�, … , 
� , where max��, �� � � � � � � � 1. The distance d(ti, sj) between two points ti and  

sj is used to identify potential warping paths. There are many distance measures that may be used, the most common 

one is the Euclidean distance, and this is the measure used in this paper. Thus, ����, 
� � 
! � ��� � 
���. The 

minimal warping path is selected by calculating the minimum cumulated distance between T and S as #����, 	� �
�$�%&∑ 
!

�
!(� ). 

3 Methodology 

The approach to automatically screen retinal images advocated in this paper comprises three phases: (i) image pre-

processing, (ii) histogram generation, and (iii) classification. The image pre-processing is required to filter out 

unnecessary information presented in the retinal images. Thus, the black area that surrounds the retinal images (see 

Figure 1) is removed. Give I images, with rows R and columns C, R and C are fixed for each $ * +. The pixels 

information of each image is stored in a matrix X. Each element of X is referred as ,-,.�$� � /, where 0 � 1 � 2 and 

0 � 3 � 4. γ is the colour value in hexadecimal format for pixel ,-,. (, * 5) of image $ * +.  

During histogram generation stage the given retinal images are translated into a histogram representation, H. 

Experiments with two “suites” of histograms are reported in this paper. The first histogram suite comprises 

histograms (per image) for each of the three colour channels: Red, Green and Blue (RGB). The second suite 

comprises histograms describing the Hue, Saturation and Intensity (HSI) components for each given retina image. In 

this work (unlike for example the work described in [3]) all histograms are assumed to carry relevant retinal image 

information. However it is note that the green and red channels give a better visual contrast of drusen as compared to 

the blue channel, as shown in Figure 1. The experiment described below, however, demonstrates that some 

interesting results are also produced by the blue channel histogram. The length of each histogram is fixed to M bins, 

and represented as 6�,7��� � 8, where 6 * 9, $ * +, b represents the RGB channel or HSI component, 0 � � � ;, 

and 8 is the histogram value of m, normalized to the maximum value recorded by a m for a particular 6�,7 . M is set to 

256 (number of colour space cells) for each red, green and blue histogram, 360 (0
o
 to 359

o
) for hue histogram and 

101 (0 to 100) for both saturation and intensity histograms. 

Using this histogram based approach a case base of pre-labelled (AMD positive or negative) histograms, < = 9, 

where < � >�, >�, . . , >? and a is a set of retinal images that have been hand classified by domain experts. The 

histograms for a new retinal image to be classified, N, where @ * 9and @ A < are then plotted onto graphs to attain 

the curves of the histograms, as depicted in Figure 2, before DTW find >? * <, a histogram that has the best warping 

path with N, of each colour channel or HSI component. Once identified, N will be classified into the same class as  

>? is. 

 

 

 

 

 

Figure 2. Histogram curves of image in Figure 1, (a) Red channel, (b) Green channel, and (c) Blue channel 

4 Experimental Setup 

To date the research team have gathered a total of 144, hand labelled images; of which 86 are AMD images and the 

rest are normal control images collected by the ARIA project
2
. The images are separated into ten equally distributed 

datasets, with approximately 9 AMD images and 6 control images for each set. Ten-fold Cross Validation was used 

to evaluate the performance of the proposed approach whereby the image set was divided into 10 subsets and ten 

evaluations runs conducted. For each run the case base was generated on a different nine tenths and the classification 
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accuracy tested on the remaining tenth. The aims of the experimental set up were two-folds: (1) to analyse the 

effectiveness of using the colour channel histogram, and (2) to investigate the effectiveness of the HSI histograms. 

Three evaluation metrics were utilized to measure the classification performance: sensitivity, specificity and 

accuracy. Sensitivity, tends to measure the effectiveness of the classifier in identifying true positives (AMD images), 

and is formulated as 
B�
$�$C$�D �  EF
G , where TP (True-Positive) is the number of AMD images classified as AMD 

by the classifier, and α is the total number of AMD images in the test set. Specificity tries to measure the 

effectiveness of the classifier in distinguishing the normal control images by not falsely classifying the control image 

as AMD images. Specificity is defined as 
>B3$H$3$�D �  EI
J , where TN is number of control images not 

misclassified as AMD images (True-Negative) and δ is the total number of control images in the test set. Accuracy 

will be used to measure the overall performance of the classifier in term of classifying retinal images correctly 

according to their class. Accuracy is defined as K33L1K3D � EFMEI
N , where ε � P � Q. 

5 Results and Discussions 

5.1 Performances of Red, Green and Blue Channels and Hue, Saturation and Intensity Components 

The results of the experiments using the RGB histogram representation are given in Table 1. The overall 

performance is promising with a best specificity of 62% (on the green channel) and sensitivity 83% (on the blue 

channel). Unexpectedly, the highest accuracy of 69% is recorded for the blue channel. Some of the dataset did 

produce a high effectiveness in both metrics, in particular dataset 1 (red channel).  

The results of the experiments using the HSI histogram representation are also given in Table 1. Inspection of HSI 

columns demonstrates that the results given by the RGB channels are replicated, however with more deficiency in 

both overall specificity and sensitivity. The best overall performance for specificity, sensitivity and accuracy is 

achieved via the saturation component, with 60%, 82% and 74% each. Dataset 9 scores the best performance in the 

hue component. 

 

Table 1. Results of using red (R), green (G), blue (B), hue (H), saturation (S) and intensity (I) for classification of 

retinal images 

 

5.2 Discussions 

With respect to the reported results in Table 1, the most surprising outcome was the performance of the blue channel 

histograms as compared to the other channels as indicated by the sensitivity measurement. Recall that high 

sensitivity demonstrates the effectiveness of the classifier in identifying AMD images. This result indicates the 

important role of the blue channel in classifying retinal images, even when it appears to feature the worst contrast 

when inspected visually. The classifier has difficulty in the identification of the control images, as shown by the 

specificity measures. This is due to the fact that there are no consistent patterns of the curves that can be used to 

identify each class. Further image pre-processing techniques might be required to better prepare the data before any 

classification process takes place. 

 

The HSI representation results described in Table 2 give similar results to those in Table 1. It is conjectured that the 

distribution of the histograms will adversely affect performance. Further observation shows that most of the RGB 

histograms feature an even distribution compared to the HSI histograms. It is conjectured that the uneven distribution 

Data 
Specificity (%) Sensitivity (%) Accuracy (%) 

R G B H S I R G B H S I R G B H S I 

1 100 80 40 60 60 100 100 56 100 67 100 89 100 64 79 64 86 93 

2 33 100 50 83 83 50 88 56 100 75 88 88 64 79 79 79 86 71 

3 50 67 67 33 50 50 67 56 100 100 89 67 60 60 87 73 73 60 

4 33 50 33 50 67 17 67 44 67 78 56 67 53 47 53 67 60 47 

5 50 50 50 50 50 83 78 78 67 56 67 56 67 67 60 53 60 67 

6 33 83 50 50 83 33 78 78 100 100 100 78 60 80 80 80 93 60 

7 67 83 33 100 67 67 88 63 75 63 88 88 79 71 57 79 79 79 

8 20 40 40 20 60 20 78 80 78 89 78 78 57 71 64 64 71 57 

9 33 50 67 100 50 33 75 63 75 100 75 75 57 57 71 100 64 57 

10 33 50 33 67 17 17 63 50 88 63 100 50 50 50 64 64 64 36 

Mean 47 62* 46 57 60 49 76 65 83* 81 82 76 65 65 69 72 74* 63 

157



causes the DTW process to calculate an almost similar distance between points in unseen and knowledge base 

histograms, and consequently inaccurately classified the histogram. However, HSI did better in terms of 

classification accuracy, with a 74% best accuracy recorded by the saturation component. This shows the ability of 

HSI in identifying patterns through the colours of the images.  

As a comparison, specificity/ sensitivity of 0.81/ 0.70 [2] and 0.99/ 0.98 [3] has been reported in other works on 

different set of images. It is worth noted however that with refinements on the images visualisation and presentation, 

a better classifier will be produced, as proved in the previous works [2, 3]. The results reported in this paper are 

deemed necessary to build up the understanding on the effect of low level image representation that may contribute 

to the development of a more reliable classifier. 

6 Conclusions 

In this paper an AMD classifier, founded on a histogram based representation combined with a DTW technique to 

screen AMD, is proposed. Two types of histograms, RGB and HSI, to represent retinal images were employed to 

analyse unseen retinal images and to classify these images. The initial results show the superiority of the RGB 

channels based histograms compared to HSI based histograms. 

 

For future works, the research team intend to identify and learn, using machine learning techniques, more distinct 

features from the histograms. More advanced image pre-processing techniques, such as image enhancement, 

segmentation and registration are also to be investigated. With such actions to be taken, it is expected that only the 

relevant part of an image be represented by histogram and thus the pattern of each class be more consistent. The 

applicability of other data mining techniques, for instance the association rule mining to mine the statistical 

information of each image such as its histograms’ peak and mean to assist with the classifier learning stage, may also 

provide a fruitful direction for future work. 
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