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Abstract. We develop a novel simultaneous reconstruction and registration algorithm for limited view
transmission tomography. The method is formulated as an optimization problem using Bayesian prob-
ability theory. Results show a promising mitigation of the data insufficiency problem in limited view
tomography. To our knowledge, this is the first study to incorporate non-registered, multimodal anatom-
ical priors into limited view transmission tomography.

1 Introduction

Limited view transmission tomography is widely used in industrial as well as clinical applications, where
it is commonly motivated by geometric design constraints on the imaging machinery, limitations on time
for image acquisition, and/or efforts to reduce patient radiation dose. Common clinical applications include
intra-operative imaging for reference with a pre-operative planning CT, angiography, chest tomosynthesis,
dental tomosynthesis, cardiac CT, and orthopaedic imaging [1]. However, limited view transmission
tomography suffers from the limitation that its reconstructions are fundamentally underdefined. The
data insufficiency problem can be understood in terms of the Fourier Slice Theorem [2]. This theorem
states that the Fourier transform of a parallel projection of an image f gives a slice through its Fourier
domain F perpendicular to the direction of the projection. Hence the incomplete angular sampling of
limited view tomography leaves large swathes of the Fourier space unmeasured. In this work, we estimate
the unsampled information by incorporating an anatomical prior into the reconstruction process. Our
intention is to eventually use this approach to regularize limited view x-ray tomography using MRI priors
(eg. regularizing digital breast tomosynthesis using an MR scan of the same patient).

The use of anatomical priors has been considered previously in emission as well as transmission tomography,
where the majority of studies have focused on intensity difference based similarity metrics for monomodal
regularization. Examples include the incorporation of planning CTs to regularize intraoperative tomosyn-
thesis reconstructions [3] in transmission tomography, and the simulation of template PET volumes from
CT or MRI priors [4] in emission tomography. In these studies it was assumed that the anatomical prior
and the object to be reconstructed were aligned a priori. Furthermore, only a few studies have investigated
the use of information theoretic similarity measures such as mutual information [5] and joint entropy [6,7]
for multimodal regularization, and this only in the field of emission tomography. Mutual information was
considered first due to its success in image registration, but it was later demonstrated by Nuyts [6] that joint
entropy introduces less bias into the reconstruction and may therefore be more appropriate. In our previous
work [8], we built on Nuyts’ results and applied joint entropy (JE) regularization to limited view transmisson
tomography with a priori registered anatomical priors. To our knowledge, this was the first study to do so.
We also identified JE’s vulnerability to local optima when used in limited view tomography and proposed
a novel approximation to increase robustness. This consisted of approximating the joint histogram by its
first and second moments. As was shown, this approximation gives good results when the joint histogram
is bimodal or contains multiple clusters that are roughly aligned. In this work, we extend our method to
a simultaneous reconstruction and registration algorithm, which can accommodate anatomical priors that
are not registered a priori. To our knowledge, the incorporation of non-registered, multimodal anatomical
priors has not been attempted previously in limited view transmission tomography.
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2 Methods

2.1 Objective function

The SRR algorithm is formulated as an optimization problem. Our objective is to maximize the joint
posterior probability P(x, 0|, B), where x is the attenuation map of the imaged object, ¢ is the deformation
field, r is the observed projection data (photon counts), and B is the anatomical prior image. Using Bayes’
rule and the definition of conditional probability, the posterior probability can be decomposed as

P(x, 8|r, B) = %P(rlx)P(BIx, 8)P(x)P(5) 1)

where we have assumed a uniform prior distribution for the projection data r, and that the marginal
probabilities of x and 6 are independent. Note also that P(r|B, x, ) = P(r|x) since the projection data depends
only on the object’s attenuation map. After log transformation, dropping constant terms, and adding
hyperparameters to control the strength of each term, we obtain the general objective function

Y(x, 0) = log P(r|x) + Blog P(Blx, 0) + y log P(x) + wlog P(0) (2)

The probability P(r|x) is the standard Poisson data likelihood, the probability P(B|x, 0) relates the registration
to the ongoing reconstruction, and the probabilities P(x) and P(d) give the marginal probability distributions
of the attenuation map and deformation field, respectively. In this work, we model the deformation field 0
using a coarse sub-grid of B-splines. The data likelihood term, then, can be expressed as a sum of concave
functions h;(1;):

M
log P(rlx) = Z hi(l;) + constant 3)

i=1

where h;(l;)) = — (ro,,-e"i + b,-) + rilog (ro,ie‘lf + bi), and where [; = le\il a;jxj. The N-dimensional vector x
is the attenuation map of the object, 4;; is the length of traversal of the i" ray through the j* pixel, r; is
the photon count observed by the i detector, ry; is the number of photons leaving the source for the i
ray, and b; accounts for scatter events. Next, the term log P(B|x, ) quantifies the similarity between the
reconstruction and the anatomical prior. Many similarity metrics have been proposed in the registration
literature, providing us with a wide range of choices. Initially, we explored the suitability of joint entropy
and mutual information for use in the SRR algorithm. However, it was found that, despite their success in
image registration, their behavior as image regularizers in limited view transmission tomography is poor
or even undesirable [6,8]. In this work, we continue to use standard similarity metrics in the registration
component of our algorithm (i.e. when updating 6), but switch to a similarity metric that has a more
desirable performance and is easier to optimize in x. For the registration component, we use normalized
mutual information (NMI), which allows for anatomical priors from different imaging modalities. For
the updates of x, we use an approximate similarity metric that mimicks the cluster-narrowing effect of
information theoretic measures in the joint histogram, yet is easier to handle and yields more desirable
results. The specific approximation is to minimize the joint entropy of a single Gaussian approximation to
the joint histogram. In other words, we let

P(BI,0) = 5 exp (~Hsc) @
B
where Zp isanormalization constant, and Hgg denotes the joint entropy of the single Gaussian approximation
to thejoint histogram of x and B. The advantage of this similarity metricis thatit yields a quadratic functionin
x, and hence enables relatively cheap update steps and fast convergence rates in x when used in combination
with the globally concave data likelihood term. We have previously reported that the proposed similarity
metric performs best for cases where the ground truth joint histogram shows two dominant clusters, or
multiple ones that are more or less aligned [8]. This was verified using pre-registered priors. Let us now
derive the form of Hg. The single Gaussian approximation can be derived by viewing the joint histogram
as the sum of N bivariate Gaussians, where N is again the number of pixels in the attenuation map. To
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approximate this Gaussian mixture model by a single bivariate Gaussian of the same first and second
X
moments, we use the expressions y* = & Z?il pjand X* = & Z;\il (Z i+ yjy].T) —w T, where yj = [ BZ]*. ], and

2
% C?z ] The notation B} is shorthand for B(p; +6;), where p; is the coordinate of the source pixel x;,

and §; is the displacement vector at that source pixel (see also Section 2.2.2). In other words, B is the intensity

%=

of the prior B at the point corresponding to x;, as given by the current estimate of 6. The interpolation of
the prior B can be achieved using many different methods, such as linear, quadratic, cubic or B-spline
interpolation. In this study we have used quadratic interpolation as a compromise between accuracy and
ease of implementation. The entropy of the fitted single Gaussian, then, is given by Hsg = 1 In ((2ne)2|):*|).
From this expression, we can see that the joint entropy of the single Gaussian can be minimized simply by
minimizing the variance |Z*|. After substituting in the relevant expressions and dropping constant terms,

2
|X*| reduces to the penalty function R(x,0) = — [CBCX - (1%1 Z;\il x]-B; - chx) ], where the variables cg, Cg, ¢y

and C; are defined as cg = & Z;\il B, = = 2?21 xj,Cg=0>+ % Z;\il B}Z —c2and Cy =0+ 3 Z;\il x]z -2

Next, we assume a uniform distribution for the marginal probability P(x), allowing us to focus instead
on the adequacy of the similarity term to regularize the reconstruction. If needed, however, it would
be straightforward to impose spatial coherence constraints in the form of Markov Random Field (MRF)
distributions by defining concave penalty functions (such as quadratic of edge-preserving Huber functions)
over nearest-neighbor cliques. This would also preserve the global concavity of the objective function in x.
Finally, to achieve spatial smoothness for the deformation field 6, we use a MRF prior defined as

P((S) = Zig, exp|— 2 Z Wpn [¢(6p,x - 671,x) + (P(ép,y - 6n,y)] (5)

p neS,

where Z; is a normalization constant, the integer p indexes the control points, and .4, represents the
neighborhood centered on the p' control point. The concave function ¢(t) penalizes the difference between
adjacent 6, and 9,,, entries, and the weights w, represent the clique weights. Here we use a quadratic
function for ¢(t), though the extension to edge-preserving penalty functions is trivial.

2.2 Optimization

To optimize the objective function, we alternate between updates of x and 6, each time keeping the other
constant. In other words, we alternate between reconstructing the attenuation map and registering it with
the anatomical prior. The optimization steps used are explained next.

2.2.1 x-update (reconstruction)

Keeping 6 constant, and assuming a uniform distribution for P(x), the objective function reduces to i (x) =

log P(rlx)+p log P(Blx, 0) = Z?ﬁl hi(l;)+BR(x, 6). The data likelihood term P(r|x) can be minorized by parabolas
of an optimal curvature [9]. This gives

M M
Q;x") = Y aill; ) + BR(x,6) < Y hilly) + BR(x, 5) (6)
i=1 i=1

where q;(I; ') = hi(I!) + Hi(lf)(li -0+ %ci(ll’.’)(li - l?)z, and x" denotes the image estimate at the beginning of
the n'" iteration. The optimal curvatures were given by Erdogan and Fessler [9] as

1(0) =i (1) +hi()12

o RO o

atp =3 O - 7)
0] . =0,
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which yields a parabola tangent at I’ that intersects the original /; function at /; = 0. Since the surrogate
Q(x; x™) in Eqn. 6 is globally concave and quadratic, we can optimize it efficiently using a Newton-Raphson
steepest ascent scheme. The direction of steepest ascent at the n' iterate x = x" is given by

2 2

, M, Ceran 1
X, =Zl‘hi(li)aij_ﬁ W[x]‘ &N

N
< ) XIB - cgcj;] (B;” =) (8)
j=1

By parameterizing the image x as x = x" + Ax’, where x’ represents the search direction, we can solve for
the optimum of the surrogate along that direction analytically. The solution can be found to be Ay = 5,
where

2.2.2 H-update (registration)

Keeping x constant, the objective function reduces to (x) = flog P(Blx, 0) + wlog P(5). In this work, we
define x to be the source image, and B to be the target image. In other words, we define the control point grid
on the image x rather than the prior B. This makes the reconstruction step easier since the data likelihood
term is defined in terms of the pixel centers x;, and not values in between. If the correspondence map were
to link values of B to values of x; that lie in between the regular pixel grid, we would need to consider
details of the image interpolation model when computing the updates for x;. Initially we used a dense
deformation field model for ¢ (i.e. every source pixel x; acts as a control point). Using a quadratic image
interpolation model, we found that the cost function 1(6) was locally a fourth order polynomial along the
direction of steepest ascent (derivation not reproduced here). However, as with any dense formulation,
the optimization showed a slow convergence rate, and sensitivity to local optima. Hence we switched to
an off-the-shelf implementation provided by Glocker [10]', which uses the fastPD algorithm to optimize
MRF-formulated registration metrics using a B-spline deformation model. This implementation provides
a range of similarity metrics, of which we focused on the NMI metric. We note here that preliminary
experiments using the normalized cross-correlation (NCC) similarity metric seemed promising as well.

3 Results and Discussion

Here we compare the performance of the SRR algorithm to that of the unregularized maximum likelihood
(ML) algorithm. Fig. 1 illustrates the results for two different phantoms, where we have reconstructed
unknown attenuation maps from 16 simulated projections distributed evenly over +£30° and an unregistered
multimodal anatomical prior. The ground truth attenuation maps shown in Fig. 1 were of course not
supplied to the reconstruction algorithm. The image size was 200x200 for all examples. The results show a
greatly increased accuracy of reconstruction, particularly so for smaller features of the image (such as the
blobs in the blob phantom). The number of steepest ascent updates used for every reconstruction step was
50, giving a run time of approximately 2 seconds per x-update. The registration step consisted of 5 iterations
of Ben Glocker’s fastPD algorithm, which completed in approximately 1 second. Hence the run time per
total iteration of the SRR algorithm was approximately 3 seconds. The total number of iterations required
to reach convergence ranged between 2 for the blob phantom, and 5 for the ideal breast phantom.

1A GUI version of this software is available at http://www.mrf-registration.net/.
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Figure 1. Reconstruction of attenuation maps from 16 simulated projections distributed evenly over +30°
and an unregistered anatomical prior. Top row: ellipse phantom. Bottom row: random blob phantom.
Left to right: original, unregularized ML, prior, SRR, joint pdf by ML, joint pdf by SRR. The maximum
misalignment is 8.5 pixels, compared to a total image size of 200x200.

3.1 Conclusions

We proposed a simultaneous reconstruction and registration algorithm that is capable of mitigating the data
insufficiency problem of limited view tomography. We derived a cost function using Bayesian probability
theory, and proposed an efficient approximation to the similarity metric for use in the reconstruction step,
as standard information theoretic metrics were previously found to be ill-suited for regularizing limited
view tomographic reconstructions. The particular approximation used was to consider the joint entropy of
a single Gaussian appoximation to the joint histogram and to minimize it. This yielded an objective function
in x that was entirely quadratic in x, and hence allowed us to use standard optimization methods with fast
iteration times and high convergence rates. We also noted that there is a tremendous amount of flexibility in
the choice of similarity metrics, image interpolation models, and deformation field models. Hence there is a
considerable scope for further optimization of these design choices in our future work. Finally, we note that
the the proposed framework could also be applied to anatomical regularization in emission tomography.
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