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Abstract. Clinical studies on atherosclerosis agree that multi-contrast MRI is the most promising technique for in-

vivo characterization of carotid plaques. Multi-contrast image registration is essential for this application, because 

it corrects misalignments caused by patient motion during MRI acquisition. To date, it has not been determined 

which automatic method provides the best registration accuracy in carotid MRI. This study tries to answer this 

question by presenting an automatic coarse-to-fine algorithm that co-registers multi-contrast images of carotid 

arteries with sub-pixel accuracy, using three similarity metrics: Correlation Ratio (CR), Mutual Information (MI) 

and Gradient MI (GMI). Automatic and manual registration were validated using a novel MRI procedure, in which 

the gold standard is represented by in-plane rigid transformations applied by the MRI system to mimic neck 

movements. Automatic registration produced lower errors than manual operators. GMI performed slightly better 

than CR and MI, suggesting that anatomical information improves registration accuracy. 

 

1. Introduction 

Atherosclerotic plaque ruptures in the carotid arteries are the main cause of ischemic strokes. Vulnerable plaques can 

be identified by their morphology and composition. Clinical studies agree that characterization and monitoring of 

carotid plaques can be successfully performed using multi-contrast MRI (T1, T2 and Proton Density weighted 

images) [1]. Image registration is essential for this application, because it corrects for patient motion, which causes 

misalignments between contrast images acquired at different times. Since carotid arteries are small (diameter < 10 

mm) with respect to the Field of View (FOV = 150×150 mm) of the images, registration should be focused on the 

carotid Region of Interest (ROI). Recent in-vivo MRI studies on carotid arteries used Mutual Information [2, 3] or 

Active Edge Maps [4, 5] for automatic rigid registration of multi-contrast images. However, these registration 

methods were not thoroughly validated or compared with other suitable candidates for this application.  

This article presents an automatic coarse-to-fine technique that performs multi-contrast ROI registration of carotid 

arteries with sub-pixel accuracy. The proposed method has already been used extensively on patients with different 

types of atherosclerotic plaques. However, in this clinical application, where the gold standard is not available, it is 

not possible to measure registration accuracy on patient images. In similar clinical scenarios, manual registration is 

often used as a reference to validate automatic methods, despite its inter- and intra-operator variability and low 

sensitivity to misalignments [6]. Other possible validation strategies are controlled phantom studies or software 

simulations, but synthetic data are simplistic and cannot consider all the challenges faced in real clinical applications. 

A way to provide a gold standard for rigid registration of real images is to use fiducial markers attached to the 

subject and visible in all contrast images [7]. Unfortunately, this technique is not suitable for carotid imaging, 

because surface coils are closely attached to the neck. Thus, in order to measure registration accuracy, we devised a 

novel MRI validation procedure, which can only be used with healthy subjects who can remain very still for long 

periods. The method mimics rigid neck movements by applying in-plane transformations (computed by the MRI 

system during acquisition) to the FOV of contrast images, providing the gold standard registration of carotid MR 

images. Using this validation method, the registration errors of three similarity metrics (CR, MI, GMI) and three 

experts (clinically qualified vascular specialists) were measured. 

 

2. Registration Overview 

The purpose of multi-contrast MRI registration is to correct for intra-subject motion, which causes misalignments 

between carotid images acquired at different times. The number of contrast images acquired at the same carotid 

location in a subject depends on the clinical MRI protocol and can vary between two (typically T1 and T2 or PD and 

T2 weightings) and more than four (T1, T2, PD and intermediate weightings). Multi-contrast images are sampled 

within the same FOV and resolution (Figure 1). This study presents an iterative algorithm that co-registers template 

and reference images (with different contrast weightings) by applying rigid transformations to the template. In the 

registration process, the initial estimate of the transformation is gradually refined and, at each iteration, the current 

estimate is used to measure the similarity between template and reference image. Powell’s multidimensional 

direction set algorithm with bisection for one-dimensional optimization [8] is used to find the transformation that 

maximizes the similarity. A coarse-to-fine strategy improves registration accuracy in the region of interest (ROI) of 

carotid arteries. The registration algorithm is implemented in MATLAB (The MathWorks, Natick, MA). 
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3. Validation Methodology 
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Figure 2. Coarse-to-fine registration example: T2 and T1 weighted images of a healthy volunteer. 

 

Five volunteers and one phantom were imaged following a clinical vascular protocol based on dark-blood Fast Spin 

Echo (FSE) pulse sequences: Repetition Time (TR) is triggered by an electrocardiogram; SNR is improved by 

acquiring the MR signal with purpose-built carotid surface coils; signal from flowing blood is suppressed, so that 

contrast between carotid lumen and wall is enhanced. The scanner operator manually set the MRI slices to be 

perpendicular to both carotid arteries and 1 cm below the lowest carotid bifurcation. The T1 (TR = 800~1500 ms, 

Echo Time TE = 12 ms), T2 (TR = 1700~3200 ms, TE = 81 ms) and PD (TR = 1700~3200 ms, TE = 12 ms) 

weighted images were acquired sequentially at the same slice location, for a total acquisition time shorter than five 

minutes. MRI slice thickness was 3 mm and in-plane pixel size 468 μm for all the contrast images. The 320×320 k-

space, acquired from a FOV of 150 mm, was zero-padded, so that its Fourier Transform produced an interpolated 

640×640 image with pixel size of 234 μm. 

3.1. Gold Standard 

The gold standard transformation exactly aligned multi-contrast MR images of the phantom. In the case of 

volunteers, head movements were assumed to be much smaller than the scanner transformation and were 

disregarded. Indeed, subjects were young, healthy and experienced MRI volunteers able to avoid swallowing or other 

movements during image acquisition (tissue deformation is only caused by breathing). The assumption of subject 

immobility was later verified by visual inspection. The MRI validation procedure consisted of the acquisition of 

multi-contrast images in their initial orientation (reference) and after random in-plane transformations (same 

magnitude of observed patient motion) were applied on the MRI scanner (template). The gold standard 

transformation was defined by rotation and x-y translations of the MRI scanner between reference and template 

images in the patient-based Reference Coordinate System (RCS). The mapping of template and reference images to 

the patient-based RCS were calculated from the attributes of their DICOM files [13], using the following 

transformation: 

0
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0 0

0 0 0 1 11

x x x x

y y y y

z z zz
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P X i Y j S j

X i Y j SP

  ∆ ∆   
     

∆ ∆     =
     ∆ ∆
     
        

 

where Pxyz are the coordinates of the pixel (i,j) in the patient-based RCS [mm]; Sxyz represent the Image Position 

(Patient) from the origin of RCS [mm]; Xxyz are values from the row direction cosine of Image Orientation (Patient); 

Yxyz are values from the column direction cosine of Image Orientation (Patient); i is the column index in the image 

frame; ∆i is the column pixel size from Pixel Spacing [mm]; j is the row index in the image frame; ∆j is the row pixel 

size from Pixel Spacing [mm]. 

3.2. Validation Dataset 

Template images were registered to reference images applying the gold standard transformation. All the possible 

combinations of template-reference image pairs with different contrasts were visually inspected to verify the 
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assumption that subjects were practically immobile

(Red channel shows the reference image, whereas
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representative group of composite RGB images was
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arteries was successfully detected by the

chosen as small as possible because manual registration was very time

 

4. Results 

The accuracy of automatic and manual registration 

centres from their gold standard position

images. The validation dataset was manually registered by three experts 

blinded to automatic results and gold standard. The

template and reference images by applying

the ROI registration). To assess intra
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Table 1. Intra
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were used as a control dataset (Figure

arteries) were correctly registered by all the similarity 

(Table 2). This was consistent with the registration accuracies obtained on the volunteer dataset 

three similarity metrics showed analogous behavio

GMI performed slightly better than CR and MI on the volunteer dataset 

 Table 2. Mean 

Errors [µm] 
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The difference between automatic and manual methods was significant (GMI

Figure 4 compare automatic and manual registration accuracy for every image pair of the validation dataset. All the 

similarity metrics obtained lower registration errors
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s were practically immobile. RGB images composed of contrast image pairs were created 

shows the reference image, whereas both Green and Blue channels show the template image) and 

checked at different magnifications, with particular attention to the alignment of 

representative group of composite RGB images was selected to form the validation dataset: 

images acquired from volunteers (3 T2-T1, 3 T2-PD and 3 T1-PD weighted images) and o

PD and 1 T1-PD weighted images). For each image pair, the ROI

by the automatic method presented in section 2.3. The validation dataset was 

chosen as small as possible because manual registration was very time-consuming (about 3-4 minutes per pair).

of automatic and manual registration was defined as the mean of the Euclidean distance

s from their gold standard positions, obtained by applying the inverse scanner transformation to the template 

images. The validation dataset was manually registered by three experts (clinically qualified vascular specialists)

tic results and gold standard. They used purpose-built registration software 

by applying in-plane rigid transformations incrementally (with sub

. To assess intra-operator and inter-operator variability, the clinicians 

registration three times each, once per week. Mean, Standard Deviation and Coefficient of Variation (CoV = 

operator registration errors were calculated (Table 1). 

ntra-operator and inter-operator registration error variability. 

 1st Op 2nd Op 3rd Op Inter-Op 

 402 259 256 305 

159 90 82 112 

40 35 32 37 

stration experiments the rigid transformation was initialized as the identity. 

ure 3) for the validation of automatic methods. Phantom tubes (representing the 

arteries) were correctly registered by all the similarity metrics, with results extremely close to the gold standard

This was consistent with the registration accuracies obtained on the volunteer dataset 

similarity metrics showed analogous behaviour. Mean registration errors were smaller than the pixel size

htly better than CR and MI on the volunteer dataset (Table 2). 

Mean ± SD of registration errors for volunteer and phantom dataset.

CR MI GMI Manual

198 ± 92 199 ± 90 181 ± 104 365 ± 102

31 ± 14 42 ± 17 23 ± 0 126 ± 35

The difference between automatic and manual methods was significant (GMI-Manual p = 0.0012). 

c and manual registration accuracy for every image pair of the validation dataset. All the 

similarity metrics obtained lower registration errors than manual operators on both phantom and volunteer 

Automatic and manual registration accuracy on phantom dataset

1 2 3
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icular attention to the alignment of the carotid arteries. A 
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Euclidean distances of carotid 

, obtained by applying the inverse scanner transformation to the template 

(clinically qualified vascular specialists), 

software to visually align 

incrementally (with sub-pixel accuracy in 

clinicians performed the manual 

registration three times each, once per week. Mean, Standard Deviation and Coefficient of Variation (CoV = 

).  

as the identity. Phantom images 

methods. Phantom tubes (representing the 

th results extremely close to the gold standard 

This was consistent with the registration accuracies obtained on the volunteer dataset (Figure 4), where the 

smaller than the pixel size and 

dataset. 

Manual 

365 ± 102 

126 ± 35 

Manual p = 0.0012). Figure 3 and 

c and manual registration accuracy for every image pair of the validation dataset. All the 

phantom and volunteer dataset.  

 

ual registration accuracy on phantom dataset.  
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5. Conclusions 

The proposed coarse-to-fine method for multi

ROI of carotid arteries. A novel MRI validation method for rigid registration

three similarity metrics and three manual operators. Correlation Ratio

registration errors smaller than the pixel size. GMI performed slightly better

about anatomical features improves registration accuracy

arteries more accurately than manual operators on the volunteer dataset. The application of the presented registration 

strategy is only limited by the assumptions explained in 

neck or large tissue deformation in the carotid ROI are not included in the in

they cannot be corrected. Although the validation study 

registration method was successfully applied on carotid MR images of atherosclerotic patients. The only 

exception to the automatic detection of common carotid arteri

 

Figure 4. Automatic a
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