
Comparing Appearance and Edge Information for Myocardial
Segmentation of the Left Ventricle in 3D Echocardiography using

Graph Cuts

Michael Verhoeka∗, Kashif Rajpoota, Andrew Blakeb and J. Alison Noblea

aInstitute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford
bMicrosoft Research Cambridge

Abstract. Fast semi-automatic segmentation of the myocardium in 3D echocardiograms may be useful for diagnosis
of heart diseases, by facilitating quantification of wall thickening and local wall motion. Segmentation in ultrasound
is challenging, especially 3D myocardial segmentation, due to low signal-to-noise ratio, different tissues having a
similar appearance and the large amount of data. In this paper, we employ a semi-automatic graph cuts algorithm
to efficiently segment the myocardium. Several types of input information are used: appearance information in the
form of intensity and a tissue characterising probability distribution, boundary information in the form of an edge
detector, and information on the position of the left ventricle. We apply our algorithm to 11 3D echocardiograms,
while varying the importance of region and boundary information, and testing several combinations of input infor-
mation. The results are compared to expert manual segmentation. We demonstrate that using a tissue characterising
distribution and positional information is beneficial to the performance, that edge measures are only beneficial in
some cases, and in general that a fast and relatively accurate segmentation can be obtained, with a possible runtime
of the order of 30 s and a true positive rate of 80% at a false positive rate of only 6.6%.

1 Introduction

Fast myocardial segmentation in 3D echocardiograms can be useful for assessing cardiac diseases, both visually for the
benefit of the clinician, and quantitatively for estimating (local) wall motion and thickening. Ultrasound (US) images
can however be challenging to segment, due to attenuation, missing boundaries, low signal-to-noise ratio and different
tissues that have a similar appearance. Working in 3D also means a large amount of data has to be processed fast, in
order to make optimal use of one of the advantages of US over other modalities, its speed.

Previously, there have been few published papers on myocardial segmentation [1] [2] [3]. As far as we are aware,
this paper is the first application of graph cuts to 3D echocardiography. Graph cuts have been applied previously to
segmentation of the heart in other imaging modalities [4]. Segmentation of 3D echocardiographic images has been
explored using a range of methods as reviewed in [5].

In this paper we use the graph cuts technique to segment the myocardium in 3D echocardiograms. Graph cuts [6] are
a promising fast segmentation methodology in computer vision, that is applied increasingly to biomedical images. In
our implementation, we employ three types of input: appearance information like intensity and tissue characterisation
by making use of the shifted Rayleigh distribution; edge information in the form of a local phase feature asymmetry
detector; and positional information. We minimise the amount of user input, restricting this to three mouse clicks
to define the position of the left ventricle (LV). The results are referenced against manual expert delineations of the
myocardium, to be able to compare the performance of each of the types of input information. In the next section, we
first describe the data available for this study and provide a brief explanation of the theory of graph cuts and of the
setup of the experiments performed. Then we discuss the results of our experiments.

2 Methods

2.1 Data sets

We obtained 11 3D+time echocardiograms from healthy subjects. These echocardiograms were recorded at the John
Radcliffe Hospital in Oxford with a Philips iE33 ultrasound system. In each time sequence, we chose to use the end-
systolic frame. These 11 3D images each had a size of 224 × 208 × 208 voxels and a spatial resolution of 0.93 mm
× 0.94 mm × 0.85 mm or 0.82 mm × 0.84 mm × 0.76 mm, depending on the settings of the ultrasound system. A
manual segmentation was made for each echocardiogram, where an endocardial and an epicardial contour for the left
and right ventricles was delineated by an expert. This was done on every fifth short-axis slice, using an interactive pen

∗Corresponding author: Michael Verhoek, mverhoek@robots.ox.ac.uk

52



display (Wacom, USA). Papillary muscles were annotated as blood pool. Where myocardium tissue appeared to be
missing because of shadow or attenuation, the expert used their knowledge of the shape of the myocardium to make
the delineation. The expert was able to view orthogonal long-axis slices while segmenting to assess the delineations in
those views.

2.2 Graph Cuts

Our discussion of the theory of the graph cuts technique will be brief and the reader is referred to [6] for a more detailed
discussion. The basic idea is to represent an image by a graph G = (V,E), where the nodes are V = {s, t} ∪ P . P is
the set of nodes that represent the voxels, and s and t are auxiliary nodes. Each node p ∈ P is connected to both s and t
via the so-called t-links and each node p is also connected to neighbours using a neighbourhood system N , these links
are n-links. Both types of links make up E. All links are assigned a weight according to an energy function, and the
graph is cut in two, so that each node p is still connected to either s or t. The algorithm finds the cut with the minimum
cost (the sum of link weights cut), which corresponds to the global energy minimum of the segmentation, assuming the
submodularity condition is satisfied, as explained in [7]. For segmentation purposes, the energy function is often given
as

E(A) = λR(A) +B(A), (1)

where A is a binary labelling, λ is the ratio of importance between both terms, R(A) is a region or data term and B(A)
is a boundary or regulariser term. R penalises when the label of a voxel does not correspond to the label suggested
by the prior model of the data, and B penalises when neighbouring voxels have a different label. Link weights in the
graph are directly related to these terms: weights on t-links are determined by R, weights on n-links are determined by
B.

In our implementation, we employ the following forms for these energy terms. R is a sum of log-likelihood functions,
based on the probability of a voxel belonging to one of the labels. In our case, this is based on the normalised intensity
histogram of voxels in foreground (F) and background (B), which are compiled before segmentation.

R(A) =
∑
p∈P

Rp(Ap), (2)

Rp(Ap = foreground) = − ln P(Ip|F), (3)
Rp(Ap = background) = − ln P(Ip|B), (4)

where Ap is the label of voxel p and Ip is the intensity value of voxel p; this can be the image intensity value or some
other appearance measure. B is a modified Ising prior [8]:

B(A) =
∑

{p,q}∈N

Bp,q|Ap −Aq|, (5)

Bp,q = α+ exp
(
− (Ip − Iq)2

ρ

)
β

dist(p, q)
, (6)

where α and β are factors that give the function a more useful shape with respect to R, ρ is a factor describing the
scanner noise and dist is a function describing the distance between neighbouring voxels p and q. To solve the minimum
energy graph cut, a C++ code written by Boykov and Jolly was used that finds the Max Flow using their version of
the Ford-Fulkerson algorithm [9]. Values used throughout our experiments were α = 150, β = 10000, ρ = 10 (note
that varying α and β together changes the relative importance of the R and B terms, we chose to vary this through
λ); neighbourhood system N : 14 neighbours (6 direct neighbours and 8 farthest neighbours, out of the 33 nearest
neighbourhood).

2.3 Implementation and Experiments

In our experiments, we segmented the myocardium in 11 3D echocardiograms using the graph cuts technique, while
varying the ratio λ in eq. (1). Since there was significant variation in brightness between echocardiograms, a histogram
equalisation step was performed to reduce this variation. The histogram of each echocardiogram was approximately
matched to the histogram of one of the echocardiograms. This pre-processing facilitated the use of the input histograms
in the graph cuts algorithm, enabling use of histograms from other images as an input for each segmentation. We used
several types of information as input for the algorithm, as described below.

Image intensity. This is the simplest form of information about a region. Using the manual segmentations, for each
image we collected image intensity values in voxels labelled as myocardium and as non-myocardium. From these,
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normalised foreground and background 14-bin histograms were generated. When segmenting each image, we used the
histograms of the 10 other images to make up F and B.

Shifted Rayleigh distribution. Several probability distributions to characterise different tissues in US images have
been tested [10]. In [1], the use of a shifted Rayleigh distribution was proposed. For each voxel in the image, we
estimate the σ2 parameter, in a neighbourhood of 53 voxels around it, using the fast integral image method [11]. From
these 11 parametric images we generated a parametric histogram in the same way as the image intensity histograms
were generated.

Edge-indicator measure. Edge information was also used as an input. The edges are derived using a local-phase
inspired 3D feature detector, called feature asymmetry (FA) measure [12]. The FA measure is designed to detect low-
contrast step-like edges (i.e., endocardial or epicardial edges) from echocardiographic images. The FA measure for 3D
feature detection uses the monogenic signal [13], which is an isotropic extension of the analytic signal, and is given by:

FA(x) =
∑
sc

b|oddsc
MG(x)| − |evensc

MG(x)| − Tscc√
(oddsc

MG(x))2 + (evensc
MG(x))2 + ε

, (7)

where sc represents the scale variable as the FA measure is computed over 3-scales, Tsc is a scale-specific threshold
parameter, ε is a small constant to avoid division by zero, and b. . .c zeros the negative values. Here, oddsc

MG(x) and
evensc

MG(x) are the odd- and even-symmetric filter responses at scale sc using the monogenic signal, respectively. This
information was implemented into the graph cuts framework, by defining

B̂p,q =
{
Bp,q from eq. (6) if FA(p) ≤ τ

0 if FA(p) > τ,
(8)

where τ is a threshold and using this B̂p,q rather than Bp,q (as defined in eq. (6)). The edge image was on a scale of 0
to 255, but thresholded at τ = 130 to ignore most noise.

Positional information. In [3], training of a classifier using the estimated position of the LV as a feature proved
beneficial for the results. In graph cuts, since there is no training step, we decided to employ a simple user input:
the user provides an approximation estimate of the location of the centre of the LV and its size, by clicking three
times in a 3D image (three orthogonal views were visible). This is translated into a capped cylinder in which the left
and right ventricles are to be found. This provides a weighting of the region term in eq. (3): we modify this to be
R̂p(fg) = Rp(fg) exp (−0.075 · Pos(xp)), where xp is the position of voxel p within the image. If xp is inside the
cylinder, Pos(xp) = 0; if xp is outside it, Pos(xp) is the Euclidean distance between the cylinder and xp.

Experiments. We ran the segmentation algorithm on all 11 images, for 25 values of λ, varying from 1 to 2100. We
did this for the normal intensity images, and for the shifted Rayleigh parametric images, without edge or positional
information. This was repeated, but now using edge information. Then these four experiments were repeated, now
making use of the positional information. The resulting segmentations were collected and compared against the manual
segmentations, calculating the number of true positives, false positives, false negatives and true negatives summed over
the 11 images, for each value of λ, in each of the experiments.

3 Results and Discussion

In Fig. 1(a), several slices of 3D echocardiograms are shown, presenting the information available (intensity image,
manual segmentation, shifted Rayleigh parametric image, position image and edge image) and in Fig. 1(b-d) examples
of the results of the segmentation algorithm using the various types of input information. In Fig. 2, we present
quantitative results in the form of ROC curves generated from the calculated true and false positives and negatives.

From Fig. 2 it can be seen that the addition of position information improves the segmentation result considerably.
Figure 1(b2-3) illustrates that this is caused by the fact that the atrium walls are segmented as well when position
information is not available. Also, bright near-field clutter can be seen as myocardium by the segmentation algorithm,
which can be prevented to some extent when using position information. From the ROC curves it is also clear that
using shifted Rayleigh parametric images rather than normal intensity images improves segmentation. This suggests
that in a tissue characterisation measure image the myocardium can be found better than in intensity images. It would
be worthwhile to empirically test which distributions would perform best in tissue characterisation, as has been done
in [10], but for 3D echocardiograms. Fig. 1(c2-3) also shows that segmentations based on the parametric images yield
smoother results than intensity images, this is caused by the smaller amount of noise in the parametric images.
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Figure 1. Qualitative results. Example slices illustrating the input images and segmentation results. a1-a5: Sample
slices of the input information. Short-axis slices of subject 2; a1. intensity image; a2. manual segmentation (white
contour on top of the intensity image); a3. shifted Rayleigh parametric image; a4. edge indicator image; a5. position
information (brightness indicates distance from cylinder). b1-b4: Sample segmentation results (white contour on top
of the intensity image), long-axis slices of subject 2, λ = 500; b1. manual segmentation; b2. segmentation result
using intensity image; b3. segmentation result using intensity image and position information; b4. segmentation result
using intensity image, position and edge information. c1-c4: Sample segmentation results, short-axis slices of subject
3, λ = 2100; c1. shifted Rayleigh parametric image; c2. segmentation result using intensity image and position
information; c3. segmentation result using Rayleigh image and position information; c4. segmentation result using
Rayleigh image, position and edge information. d1-d2: Sample slices showing edge information is not used to the
fullest extent, short-axis slices of subject 2, λ = 2100; d1. segmentation result using Rayleigh image and location and
edge information; d2. edge indicator image FA.

The use of edge information gives mixed results, as can be seen in Fig. 2: when applied to intensity images, a clear
improvement is seen when adding edge information (illustrated in Fig. 1(b3-4)). When applied to shifted Rayleigh
parametric images however, no clear improvement can be observed, and the two ROC curves almost coincide (Fig.2,
and illustrated in Fig. 1(c3-4)). We are led to believe that the edge information runs into the restrictions that the GC
algorithm itself imposes on this type of information. This can be made clear when looking at eq. (5): the boundary
penalty only comes into play when neighbouring voxels are labelled differently in the current segmentation. In this
setup, the algorithm does not look at the edge measure as long as neighbouring voxels have the same label, i.e. it only
takes edge measures into account when the intensity image or parametric image gives it reason to do so. However, we
want a boundary penalty when neighbouring voxels are labelled the same and the edge measure indicates there they are
supposed to be labelled differently. One way to improve the handling of an edge measure, would be the introduction of
a ‘reversed’ version of eq. (5), i.e. B(A) =

∑
Bp,qδ(Ap, Aq), using the Kronecker delta. In future work, we intend to

implement this proposal. In Fig. 1(d1) it can be seen that no boundaries are found, even though they are clearly present
in the edge image Fig. 1(d2); cases like these would benefit from this reversal of the boundary penalty.

The graph cut algorithm is relatively fast, segmenting a 224 × 208 × 208 voxel image in about 30-60 s on a normal
desktop computer (Intel Xeon 3.2 GHz CPU, 2GB RAM). Our code has not been optimised for speed, if we were to do
so, run times would probably be halved or smaller. Implementation on a GPU would possibly enable run time in the
order of seconds or less. The best possible segmentation results (averaged over all images) are a TPR (true positive rate)
of 80% at an FPR (false positive rate) of only 6.6%. This is a good accuracy, especially since myocardial segmentation
is more challenging than endocardial segmentation.
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Figure 2. Quantitative results. ROC curves demonstrate an increase in segmentation performance for Rayleigh over
intensity image, for using position information, and for using edge information in the intensity image. a. No position
information including, b. position information included.

4 Conclusion

We investigated various input measures in a novel graph cuts myocardial segmentation algorithm, applied to 3D
echocardiograms. We compared against manual segmentations and found that the results were fast and relatively
accurate, with a TPR of 80% at an FPR of only 6.6%. Of the possible input measures, we found that using a Rayleigh
parametric image performs better than a normal intensity image, that using a position measure is very beneficial and
that adding edge information only improves the result for intensity images; for Rayleigh images, the segmentation is
already at its peak performance, but we suggest that the results from using edge measures in general can be improved
by changing the way boundary penalties are given within the algorithm. In future work, we intend to compare our
results against a delineation using Random Forests, an advanced machine learning approach [3]. The implementation
in [3] runs at a similar speed as the method described in this paper.
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