Super Resolution in MRI: How far can we go?
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Abstract. Super Resolution (SR) in MRI has been described as a teahtiig allows an increase of resolution
without a loss in the Signal to Noise Ratio (SNR), essentialbviding “free” resolution. This study explores this
claim and investigates the limits to SR in the presence dfediVe show that the amplification of noise due to the
SR algorithm can outweigh the signal benefit, leading to S&tRictions that could counter the motivation for using
the SR approach. Thresholds for successful SR approaahdst@rmined through simulation, which are lower than
used previously in the literature. We also assess thelinégalving power of different slice profile shapes, without
any further post-processing, and show that for rectangliee profiles, it can be far higher than the slice width
suggests. This finding has practical implications for gtrrad MRI and could be used to provide “free” SNR.

1 Introduction

Super Resolution (SR) is a term used primarily for image @ssimg methods that achieve an improvement in image
resolution from lower resolution input images [1]. It is giwal area of research in many types of imaging, including
satellite and surveillance, where the expense or praityicdlincreasing resolution by conventional means may ot b
feasible. SR has been applied to MRI with some controversgt motably the first attempt, which applied it in the
in-plane direction [2]. This approach was questioned bgedloe MR signal is inherently bandlimited, hence cannot
contain any information at frequencies higher than thetiigipixel size [3, 4]. However the application of SR in the
through-plane direction offers greater potential for Migphcations, and has already been used for fMRI and cardiac
MRI as a method enabling an increase in slice resolutionouith loss in Signal to Noise Ratio (SNR) [5—7].

The application of SR in the through-plane direction woubdigist of the following acquisition and processing. Ac-
quire data with a slice thickness &f mm (normally measured by the FWHM of the slice profile), atieesteparation

of ss mm, st > ss. This effectively corresponds to overlapping slices, wttlie Slice Overlap Ratio, SORst/ss.
Then apply a SR algorithm to recover the ideal resolutiomm; this would consist of a deconvolution of the slice
profile from the data. A perfect SR reconstruction would éferre result in higher resolution post-processed data com-
pared to the input data, allowing an increase in resolutighomt loss of SNR associated with acquiring directly at
SOR=1. However this scenario is in the case of noise-fregésafor which the SR algorithm is able to deblur the
data and restore the resolutionge mm, with no noise amplification. Unfortunately all deconuin methods are
sensitive to the presence of noise, which causes non-umégsend instability in the solution [8].

We hypothesise that, in the presence of noise, there is eilgBOR at which deconvolution can successfully recover
the true high-resolution image, without amplifying the s®to such an extent that there is no further SNR benefit to
the SR approach. The aim of this work is to investigate thdilign SOR levels under different noise conditions and
slice profiles. This is done initially using simulations oRasolution Test Phantom, and then illustrated using MRI
data. The results are discussed in the context of SOR vasiggkin previous implementations of SR in MRI.

2 Methods

All simulations are carried out using MATLAB (The MathWorkac).

2.1 Resolution Test Phantom

Object and Image Simulation. The Resolution Test Phantom is composed of two objects, ekweldth ss, their
centres separated ¢s. To simulate the imaging process in the MR scanner, the Testtem is convolved over

a high-resolution grid.01ss, with the slice profile, and then discretely samplegaintervals to form the image.
Images are simulated for either a Gaussian or rectangudar glofiles, and a range of SOR values (1, 1.1, ..., 1.8).
Random Gaussian noise is then added, with the standardidevia,,., scaled to the Noise/Signal (1/SNR) ratio; a
range of noise values are investigated between 2% and 2@#%ecto simulate a range of applications from high SNR
(e.g. structural) to low SNR (e.g. Diffusion Weighted Invagi DWI).
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Resolution Assessment. The phantom allows a quantitative assessment of resolbtiaalculating the signal mod-
ulation between the two objects. A modulation of 100% cqoesls to a perfect reconstruction, and the objects are
said to be resolved if the modulation is equal or greater 8@ [9]. For this study, the modulation is calculated
as(min(zy,z2) — zo)/min(z1, z2), wherez; andz, are the image object intensities, anglis the image intensity
between the objects. The initial modulation for the simedidtmages is calculated prior to deconvolution.

SR algorithm. A regularised filter with a Laplacian smoothing constragused for the deconvolution, the per-
formance of which can be altered by varying its regularisaparameter), the Lagrange Multiplier. The value of
determines either the dominance of noise-propagatiom éreo noisy solutions), or the dominance of approximation
error, (i.e. blurry images) [8]. Since the imaging modelibhs@s a continuous model, and is then discretised by assum-
ing a zero-hold interpolation, the PSF used in the decomianlis a discretely sampled convolution of the continuous
slice profile with a rectangular function representing taeozhold.

Our SR algorithm optimises the deconvolution by selectirggrhaximum\ = A, for which the deconvolved image
can resolve the objects. This is done on an iterative basginhing with a high\, and gradually reducing it until the
objects can just be resolved. Onkg, has been found, the post SR algorithm noise in the deconyaivage is then
calculated by estimating the standard deviation in a batkgt regionn,.s:. This algorithm is then repeated 1000
times with different noise realisations, to build up a digttion of results.

SNR assessment. The SNR change, relative to SOR=1 and no SR algorithm, canlibecalculated fromASNR =
Asignal/Anoise = SOR/(npost/npre). AN SNR change greater than 1 indicates that the signal ehérmog the
thicker slice is greater than the corresponding noise dicgaiion from the SR algorithm (necessary to achieve the true
resolution ofss mm). However if the SNR change is below 1, then the noise ditgtiion exceeds the signal increase,
implying that there is no net SNR benefit from using the SR rligan over acquiring directly at the ss resolution
(assuming this is technologically possible). If the SNRrad®is greater than 1, then this can be directly traded for
isotropic resolution according to the following formulsz;s, = 1 — 1/+v/ASNR, which indicates the improvement in
resolution for the same “SNR-quality” of data.

2.2 MR Test Data

A slice from a 1.1mm SPGR data set is used as the input high-resolution imageinfaging process is simulated as
described earlier for the Resolution Phantom sfor= 2mm and the same range of SOR values. Deconvolution is then
carried out using the regularisation parameter val¥gs, as determined previously.

3 Resultsand Discussion

3.1 Resolution Test Phantom

Initial Resolution Assessment. Figure 1 shows histograms of the number of successful résp&uprior to deconvo-
lution. The histogram on the left shows the results for a Giansslice profile, indicating that with no noise preserg, th
objects can be successfully resolved with an SOR=1.2, wittih@ need for any SR algorithm. The corresponding SOR
value for the rectangular slice profile is 1.5. As noise isaatidhe SOR threshold reduces in both cases, but it is clear
that the Gaussian slice profile is less robust to the presgfieise. These results indicate that the “true” resolution
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Figure 1. Histogram of successful resolutions prior to SR algorithm.
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Figure2. Examples of the simulated images (upper) and deconvolvadas(lower). In all images, the vertical axis is
the z-axis, the through-plane direction. The horizontés indicates increasing SOR. The arrows on the upper images
show the maximum SOR at which the objects can be succességbived prior to deconvolution. (The images are
zoomed to show the resolution test object only, the noisstimated from a ROI outside of the visible area.)
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Figure 3. Graphs showing the noise amplification due to the SR algarifor 2% and 12% noise. The error bars
indicate one standard deviation from the mean noise vale dashed line indicates the maximum noise amplification
allowed beforeASNR falls below 1.
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of the data acquired with a rectangular slice profile willeofbe higher than the acquired slice width suggests, even
without the application of a post processing SR algorithrony@rsely, noise can mask resolution when a Gaussian
slice profile is used, with the resolution test failing evenrion-overlapping slices (SOR=1) at high noise levels.

SR algorithm. Selected results from the simulation and deconvolutionr{@iise levels 2 % and 12%) are shown in
Figure 2. The upper row show the initial images prior to aggilon of the SR algorithm, showing that the two objects
are more clearly resolved, and to a higher SOR factor, whentamgular slice profile is used. The lower row in Figure
2 show the deconvolved images from the SR algorithm. At 2%eyaileconvolution enables good visual resolution
of the two objects for both the rectangular and Gaussiag gliofiles. However, this resolution increase comes at the
expense of noise amplification, as is illustrated by the 12#aimages in Figure 1. Figure 3 shows the noise amplifi-
cation post deconvolution, for both slice profiles at diéfer SOR factors. The Gaussian deconvolution amplifies noise
more than a rectangular slice profile, and generally has dmreater variability in noise amplification, indicated by
the larger error bars. This behaviour is exactly what is etgmbfrom calculating the Condition Numbers of the PSFs
(data not shown). For a given SOR, the Gaussian PSF has a bigidition number compared to the rectangular PSF
and hence will be more sensitive to the presence of noise, stsown by the data in Figure 3 [10]. The dashed line
in Figure 3 indicates the maximum noise amplification thatlba compensated for by the increase in signal, resulting
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Figure4. The mean % voxel change realised by trading increased SNiegolution (Rectangular slice profile).

in an overall increase in SNR. For the Gaussian PSF, noneeaddta points and associated error bars, for all noise
levels, fall below this threshold, implying that the noiseification always exceeds the signal increase. Howewer, f
the rectangular PSF, the noise amplification is sufficielatlyfor a range of SOR and noise values, for example SOR
< 1.6 at 2% noise, and SOR 1.4 at 12% noise.

Figure 4 shows thé\z;,, possible from the overal\SNR, for the rectangular PSF, for both pre and post SR al-
gorithm (results are thresholded to only those with 84% demfte of successful resolution). For high noise levels
(> 8%), there is a significant benefit from processing with the Sf®rthm (acquiring at SOR=1.1), allowing at least
a 9% reduction in voxel size for all noise levels. This imprment is greater than that expected from just the signal
increase alone, suggesting that the noise has actuallyrbdaoed by the deconvolution; the result of the SR algorithm
was to blur the image rather than sharpen edges. This ishp@ssithese cases because the initial image was much
sharper than required by the modulation assessment ofitesul For noise levels below this, 2-6%, roughly the same
improvement can be achieved by simply acquiring at SOR=1Magplying no SR algorithm. This has the advantage
that no deconvolution needs to be done, which requires dgation to select the regularisation parameter. Although
this simulation had an easily assessable criterion (mdidalait is harder to select and optimise such criteria wthl
images.

3.2 MR Test Data

Figure 5 shows an example of the results of the simulatiorherMR SPGR data for SOR=1.4 and 2% noise. This
figure illustrates the earlier results. Firstly, that theu€san slice profile results in lower resolution images ttngn
rectangular (comparing andd). Secondly, there is little visual difference between SQRmd SOR=1.4 with a
rectangular slice profilea(andb), which supports the proposal that they both have resopovger equal to the matrix
size. Thirdly, the noise amplification from deconvolving tBaussian slice profile is clear to seein
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Figure 5. Examples of deconvolution on simulated MR data, with SOR=ahd 2% noise.

4 Conclusions

There are two main conclusions of this work. Firstly, deadation will always in general, come with some noise
penalty. Intuitively, the deconvolution process in all SBoaithms will act similarly on noise as it does on signaldan
so this is expected. The noise amplification is dependent@slice profile size and shape, and for some situations
will indeed be compensated for by the increase in signal fileenSR acquisition. We have explored two different
slice profiles, rectangular and Gaussian. Although rectiamgrofiles are the ideal slice profile, due to technoldgica
limitations this is not achievable in practice, and the igle profile tends to be more Gaussian-like. Therefore the
results from both are relevant and represent the two exgseme



We have shown that Gaussian slice profiles are not robusetprissence of noise, and the noise amplification from
the deconvolution tends to outweigh the signal increaselitgy to an overall reduction in SNR compared to acquiring
directly atss mm resolution. Gaussians have been shown to be one of thelpmsted PSFs for deconvolution [10].
The situation is more hopeful for rectangular slice profildewever, if we wish the SR algorithm to recover the exact
ss mm resolution, then we have shown that there is a maximum S©trf which depends on the original noise in the
image. At typical 2% noise, the maximum SOR is 1.6, and thisices as noise increases. These results imply that for
those studies in the literature that have quoted SOR faatmge this threshold, they either carry a SNR penalty, or the
SR algorithm is not truly recovering the resolution backhte tlesired resolution.

The second conclusion of this report relates to the inigabtution assessments, which indicate that the resolution
power of a slice profile can be far higher than its slice widtggests. This has the advantage that the images need not
undergo any post-processing that may amplify the noise andénthis is indeed “free” SNR. Current work attempts
to use these results with real MRI data acquired with SOR

This study has some practical implications. The major iogilon follows from the latter conclusion, and offers a
free SNR boost for structural MRI (assuming that the sliagfifer is close to rectangular in shape). For example, an
image can be said to have through-plane resolutiomm, even when acquired at SOR=1.4 with a rectangular slice
profile. This could be motivation to alter structural imageuaisition parameters. Also, the dependence on slice erofil
shape implies that it is worth investing in improvementsim shape of the slice profile, to improve the performance of
SR algorithms.

The motivation for this study was the wish to use SR to imprheresolution in SNR limited applications, such

as DWI. Unfortunately, results have shown that low SNR atgs as a performance limiter for the SR algorithm. This
is especially pertinent for DTI studies, as the accuracymedision of the post-processing is very sensitive to the im
ages SNR. For example, it has been shown that low SNR canlirdec positive bias in the Fractional Anisotropy [11].
However SR could also be used in areas where there are tathmiitations to acquiring thin slices, such as gradient
specifications. In this case, if the application can coph atit SNR penalty, then SR does obviously still offer poténtia
for increasing the resolution.

Further work is intended to investigate the dependenceiom gtofile shape, and deconvolution routine. The simula-
tion was carried out using a simple implementation of a SRrétlgm, with deconvolution regularised by the Laplacian
smoothing operator. More sophisticated SR algorithms nednabe subtly differently; however, we believe the results
are transferable across to other SR algorithms due to thenxoondeconvolution that is necessary to de-blur the image.
Similar results were achieved with a Wiener filter (not shpvieconvolution algorithms used in the literature tend to
be iterative based ones such as POCS and the Irani PelegtAtgpand it would be useful to investigate these [1].
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