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Abstract. Super Resolution (SR) in MRI has been described as a technique that allows an increase of resolution
without a loss in the Signal to Noise Ratio (SNR), essentially providing “free” resolution. This study explores this
claim and investigates the limits to SR in the presence of noise. We show that the amplification of noise due to the
SR algorithm can outweigh the signal benefit, leading to SNR reductions that could counter the motivation for using
the SR approach. Thresholds for successful SR approaches are determined through simulation, which are lower than
used previously in the literature. We also assess the initial resolving power of different slice profile shapes, without
any further post-processing, and show that for rectangularslice profiles, it can be far higher than the slice width
suggests. This finding has practical implications for structural MRI and could be used to provide “free” SNR.

1 Introduction

Super Resolution (SR) is a term used primarily for image processing methods that achieve an improvement in image
resolution from lower resolution input images [1]. It is a topical area of research in many types of imaging, including
satellite and surveillance, where the expense or practicality of increasing resolution by conventional means may not be
feasible. SR has been applied to MRI with some controversy, most notably the first attempt, which applied it in the
in-plane direction [2]. This approach was questioned because the MR signal is inherently bandlimited, hence cannot
contain any information at frequencies higher than the limiting pixel size [3, 4]. However the application of SR in the
through-plane direction offers greater potential for MRI applications, and has already been used for fMRI and cardiac
MRI as a method enabling an increase in slice resolution without a loss in Signal to Noise Ratio (SNR) [5–7].

The application of SR in the through-plane direction would consist of the following acquisition and processing. Ac-
quire data with a slice thickness ofst mm (normally measured by the FWHM of the slice profile), at a slice separation
of ss mm, st > ss. This effectively corresponds to overlapping slices, where the Slice Overlap Ratio, SOR =st/ss.
Then apply a SR algorithm to recover the ideal resolutionss mm; this would consist of a deconvolution of the slice
profile from the data. A perfect SR reconstruction would therefore result in higher resolution post-processed data com-
pared to the input data, allowing an increase in resolution without loss of SNR associated with acquiring directly at
SOR=1. However this scenario is in the case of noise-free images, for which the SR algorithm is able to deblur the
data and restore the resolution toss mm, with no noise amplification. Unfortunately all deconvolution methods are
sensitive to the presence of noise, which causes non-uniqueness and instability in the solution [8].

We hypothesise that, in the presence of noise, there is a limiting SOR at which deconvolution can successfully recover
the true high-resolution image, without amplifying the noise to such an extent that there is no further SNR benefit to
the SR approach. The aim of this work is to investigate the limiting SOR levels under different noise conditions and
slice profiles. This is done initially using simulations of aResolution Test Phantom, and then illustrated using MRI
data. The results are discussed in the context of SOR values used in previous implementations of SR in MRI.

2 Methods

All simulations are carried out using MATLAB (The MathWorks, Inc).

2.1 Resolution Test Phantom

Object and Image Simulation. The Resolution Test Phantom is composed of two objects, eachof width ss, their
centres separated by2ss. To simulate the imaging process in the MR scanner, the Test Phantom is convolved over
a high-resolution grid,0.01ss, with the slice profile, and then discretely sampled atss intervals to form the image.
Images are simulated for either a Gaussian or rectangular slice profiles, and a range of SOR values (1, 1.1, ..., 1.8).
Random Gaussian noise is then added, with the standard deviation, npre, scaled to the Noise/Signal (1/SNR) ratio; a
range of noise values are investigated between 2% and 20%, chosen to simulate a range of applications from high SNR
(e.g. structural) to low SNR (e.g. Diffusion Weighted Imaging, DWI).
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Resolution Assessment. The phantom allows a quantitative assessment of resolutionby calculating the signal mod-
ulation between the two objects. A modulation of 100% corresponds to a perfect reconstruction, and the objects are
said to be resolved if the modulation is equal or greater than50% [9]. For this study, the modulation is calculated
as(min(x1, x2) − x0)/min(x1, x2), wherex1 andx2 are the image object intensities, andx0 is the image intensity
between the objects. The initial modulation for the simulated images is calculated prior to deconvolution.

SR algorithm. A regularised filter with a Laplacian smoothing constraint is used for the deconvolution, the per-
formance of which can be altered by varying its regularisation parameter,λ, the Lagrange Multiplier. The value ofλ
determines either the dominance of noise-propagation error (i.e. noisy solutions), or the dominance of approximation
error, (i.e. blurry images) [8]. Since the imaging model begins as a continuous model, and is then discretised by assum-
ing a zero-hold interpolation, the PSF used in the deconvolution is a discretely sampled convolution of the continuous
slice profile with a rectangular function representing the zero-hold.

Our SR algorithm optimises the deconvolution by selecting the maximumλ = λopt, for which the deconvolved image
can resolve the objects. This is done on an iterative basis, beginning with a highλ, and gradually reducing it until the
objects can just be resolved. Onceλopt has been found, the post SR algorithm noise in the deconvolved image is then
calculated by estimating the standard deviation in a background region,npost. This algorithm is then repeated 1000
times with different noise realisations, to build up a distribution of results.

SNR assessment. The SNR change, relative to SOR=1 and no SR algorithm, can then be calculated from∆SNR =
∆signal/∆noise = SOR/(npost/npre). An SNR change greater than 1 indicates that the signal change from the
thicker slice is greater than the corresponding noise amplification from the SR algorithm (necessary to achieve the true
resolution ofss mm). However if the SNR change is below 1, then the noise amplification exceeds the signal increase,
implying that there is no net SNR benefit from using the SR algorithm over acquiring directly at the ss resolution
(assuming this is technologically possible). If the SNR change is greater than 1, then this can be directly traded for
isotropic resolution according to the following formula,∆xiso = 1− 1/ 3

√
∆SNR, which indicates the improvement in

resolution for the same “SNR-quality” of data.

2.2 MR Test Data

A slice from a 1.1mm3 SPGR data set is used as the input high-resolution image. Theimaging process is simulated as
described earlier for the Resolution Phantom, forss = 2mm and the same range of SOR values. Deconvolution is then
carried out using the regularisation parameter values,λopt, as determined previously.

3 Results and Discussion

3.1 Resolution Test Phantom

Initial Resolution Assessment. Figure 1 shows histograms of the number of successful resolutions prior to deconvo-
lution. The histogram on the left shows the results for a Gaussian slice profile, indicating that with no noise present, the
objects can be successfully resolved with an SOR=1.2, without the need for any SR algorithm. The corresponding SOR
value for the rectangular slice profile is 1.5. As noise is added, the SOR threshold reduces in both cases, but it is clear
that the Gaussian slice profile is less robust to the presenceof noise. These results indicate that the “true” resolution
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Figure 1. Histogram of successful resolutions prior to SR algorithm.
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Figure 2. Examples of the simulated images (upper) and deconvolved images (lower). In all images, the vertical axis is
the z-axis, the through-plane direction. The horizontal axis indicates increasing SOR. The arrows on the upper images
show the maximum SOR at which the objects can be successfullyresolved prior to deconvolution. (The images are
zoomed to show the resolution test object only, the noise is estimated from a ROI outside of the visible area.)
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Figure 3. Graphs showing the noise amplification due to the SR algorithm, for 2% and 12% noise. The error bars
indicate one standard deviation from the mean noise value. The dashed line indicates the maximum noise amplification
allowed before∆SNR falls below 1.

of the data acquired with a rectangular slice profile will often be higher than the acquired slice width suggests, even
without the application of a post processing SR algorithm. Conversely, noise can mask resolution when a Gaussian
slice profile is used, with the resolution test failing even for non-overlapping slices (SOR=1) at high noise levels.

SR algorithm. Selected results from the simulation and deconvolution (for noise levels 2 % and 12%) are shown in
Figure 2. The upper row show the initial images prior to application of the SR algorithm, showing that the two objects
are more clearly resolved, and to a higher SOR factor, when a rectangular slice profile is used. The lower row in Figure
2 show the deconvolved images from the SR algorithm. At 2% noise, deconvolution enables good visual resolution
of the two objects for both the rectangular and Gaussian slice profiles. However, this resolution increase comes at the
expense of noise amplification, as is illustrated by the 12% noise images in Figure 1. Figure 3 shows the noise amplifi-
cation post deconvolution, for both slice profiles at different SOR factors. The Gaussian deconvolution amplifies noise
more than a rectangular slice profile, and generally has a much greater variability in noise amplification, indicated by
the larger error bars. This behaviour is exactly what is expected from calculating the Condition Numbers of the PSFs
(data not shown). For a given SOR, the Gaussian PSF has a higher condition number compared to the rectangular PSF
and hence will be more sensitive to the presence of noise, as is shown by the data in Figure 3 [10]. The dashed line
in Figure 3 indicates the maximum noise amplification that can be compensated for by the increase in signal, resulting
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Figure 4. The mean % voxel change realised by trading increased SNR forresolution (Rectangular slice profile).

in an overall increase in SNR. For the Gaussian PSF, none of the data points and associated error bars, for all noise
levels, fall below this threshold, implying that the noise amplification always exceeds the signal increase. However, for
the rectangular PSF, the noise amplification is sufficientlylow for a range of SOR and noise values, for example SOR
≤ 1.6 at 2% noise, and SOR≤ 1.4 at 12% noise.

Figure 4 shows the∆xiso possible from the overall∆SNR, for the rectangular PSF, for both pre and post SR al-
gorithm (results are thresholded to only those with 84% confidence of successful resolution). For high noise levels
(≥ 8%), there is a significant benefit from processing with the SR algorithm (acquiring at SOR=1.1), allowing at least
a 9% reduction in voxel size for all noise levels. This improvement is greater than that expected from just the signal
increase alone, suggesting that the noise has actually beenreduced by the deconvolution; the result of the SR algorithm
was to blur the image rather than sharpen edges. This is possible in these cases because the initial image was much
sharper than required by the modulation assessment of resolution. For noise levels below this, 2-6%, roughly the same
improvement can be achieved by simply acquiring at SOR=1.4 and applying no SR algorithm. This has the advantage
that no deconvolution needs to be done, which requires optimisation to select the regularisation parameter. Although
this simulation had an easily assessable criterion (modulation), it is harder to select and optimise such criteria withreal
images.

3.2 MR Test Data

Figure 5 shows an example of the results of the simulation on the MR SPGR data for SOR=1.4 and 2% noise. This
figure illustrates the earlier results. Firstly, that the Gaussian slice profile results in lower resolution images thanthe
rectangular (comparingb and d). Secondly, there is little visual difference between SOR=1 and SOR=1.4 with a
rectangular slice profile (a andb), which supports the proposal that they both have resolvingpower equal to the matrix
size. Thirdly, the noise amplification from deconvolving the Gaussian slice profile is clear to see ine.

Figure 5. Examples of deconvolution on simulated MR data, with SOR=1.4 and 2% noise.

4 Conclusions

There are two main conclusions of this work. Firstly, deconvolution will always in general, come with some noise
penalty. Intuitively, the deconvolution process in all SR algorithms will act similarly on noise as it does on signal, and
so this is expected. The noise amplification is dependent on the slice profile size and shape, and for some situations
will indeed be compensated for by the increase in signal fromthe SR acquisition. We have explored two different
slice profiles, rectangular and Gaussian. Although rectangular profiles are the ideal slice profile, due to technological
limitations this is not achievable in practice, and the realslice profile tends to be more Gaussian-like. Therefore the
results from both are relevant and represent the two extremes.
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We have shown that Gaussian slice profiles are not robust to the presence of noise, and the noise amplification from
the deconvolution tends to outweigh the signal increase, leading to an overall reduction in SNR compared to acquiring
directly atss mm resolution. Gaussians have been shown to be one of the mostill-posed PSFs for deconvolution [10].
The situation is more hopeful for rectangular slice profiles. However, if we wish the SR algorithm to recover the exact
ss mm resolution, then we have shown that there is a maximum SOR factor, which depends on the original noise in the
image. At typical 2% noise, the maximum SOR is 1.6, and this reduces as noise increases. These results imply that for
those studies in the literature that have quoted SOR factorsabove this threshold, they either carry a SNR penalty, or the
SR algorithm is not truly recovering the resolution back to the desired resolution.

The second conclusion of this report relates to the initial resolution assessments, which indicate that the resolution
power of a slice profile can be far higher than its slice width suggests. This has the advantage that the images need not
undergo any post-processing that may amplify the noise and hence this is indeed “free” SNR. Current work attempts
to use these results with real MRI data acquired with SOR> 1.

This study has some practical implications. The major implication follows from the latter conclusion, and offers a
free SNR boost for structural MRI (assuming that the slice profile is close to rectangular in shape). For example, an
image can be said to have through-plane resolutionss mm, even when acquired at SOR=1.4 with a rectangular slice
profile. This could be motivation to alter structural image acquisition parameters. Also, the dependence on slice profile
shape implies that it is worth investing in improvements to the shape of the slice profile, to improve the performance of
SR algorithms.

The motivation for this study was the wish to use SR to improvethe resolution in SNR limited applications, such
as DWI. Unfortunately, results have shown that low SNR also acts as a performance limiter for the SR algorithm. This
is especially pertinent for DTI studies, as the accuracy andprecision of the post-processing is very sensitive to the im-
ages SNR. For example, it has been shown that low SNR can introduce a positive bias in the Fractional Anisotropy [11].
However SR could also be used in areas where there are technical limitations to acquiring thin slices, such as gradient
specifications. In this case, if the application can cope with an SNR penalty, then SR does obviously still offer potential
for increasing the resolution.

Further work is intended to investigate the dependence on slice profile shape, and deconvolution routine. The simula-
tion was carried out using a simple implementation of a SR algorithm, with deconvolution regularised by the Laplacian
smoothing operator. More sophisticated SR algorithms may behave subtly differently; however, we believe the results
are transferable across to other SR algorithms due to the common deconvolution that is necessary to de-blur the image.
Similar results were achieved with a Wiener filter (not shown). Deconvolution algorithms used in the literature tend to
be iterative based ones such as POCS and the Irani Peleg Algorithm, and it would be useful to investigate these [1].
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