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Abstract

Video prediction is a fundamental task for various downstream applications, includ-
ing robotics and world modeling. Although general video prediction models have achieved
remarkable performance in standard scenarios, occlusion is still an inherent challenge
in video prediction. We hypothesize that providing explicit information about motion
(via point-flow) and geometric structure (via depth-maps) will enable video prediction
models to perform better in situations with occlusion and the background motion. To
investigate this, we present the first systematic study dedicated to occluded video pre-
diction. We use a standard multi-object latent transformer architecture to predict future
frames, but modify this to incorporate information from depth and point-flow. We evalu-
ate this model in a controlled setting on both synthetic and real-world datasets with not
only appearance-based metrics but also Wasserstein distances on object masks, which
can effectively measure the motion distribution of the prediction. We find that when the
prediction model is assisted with point flow and depth, it performs better in occluded
scenarios and predicts more accurate background motion compared to models without
the help of these modalities.

1 Introduction

Video prediction is a crucial task for intelligent agents, with applications in robotics [19],
autonomous driving [52], world models [44], and weather forecasting [34]. Accurately pre-
dicting the near future (e.g., 1-2 seconds) is essential, as it directly improves an agent’s
decision-making efficiency [4]. The development of vision transformers for images [8] and
videos [1] have made possible to improve video prediction quality [30, 32, 39, 55]. However,
due to the inherent complexity of motion in dynamic scenes with multiple objects, occlusions
frequently occur, and latent transformer models can still struggle to accurately estimate the

motion of objects that become temporarily invisible [40].
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Several approaches aim to improve video prediction by incorporating optical flow esti-
mation [2, 27, 29, 59]. However, two major limitations of optical flow are that it accumulates
errors over time, and loses information when objects become fully occluded. As a result, op-
tical flow-based methods struggle to handle complete occlusions effectively. Unlike optical
flow, which relies on dense pixel-wise motion estimation, recent progress in point tracking
methods enable more robust occlusion handling by tracking and estimating key points on
objects even when they are fully occluded [22, 41, 50]. Furthermore, background motion
is also well represented by point-flow, which is essential for modeling the motion of an
ego-camera (e.g., autonomous cars). Equally critical to occlusion handling, depth maps can
provide geometric structure of the scene, allowing for better spatial reasoning in occlusion
scenarios.

In this work, we hypothesize that integrating information about depth and the flow of
points into a video prediction model will enhance its ability to anticipate object and back-
ground motion, particularly in occluded scenarios. While point-flow helps track object mo-
tion trajectories, depth maps introduce explicit spatial constraints that improve occlusion-
aware prediction. To investigate this, we use latent transformer as our video prediction
model, which lacks robustness to occlusions when only relying on RGB images [40], and
propose a variant that incorporates both point-flow and depth as additional modalities. Our
approach enables the model to retain motion information when objects become temporarily
invisible, improving future frame prediction accuracy by leveraging both motion trajectories
and spatial structure alongside visual cues. Furthermore, with the assistance of point-flow,
the background motion can be predicted more accurately with more precise direction of
background motion.

Our main contributions are as follows:

* We provide the first systematic analysis of how depth and point-flow impact the per-
formance of prediction when dynamic scenes have occlusions and background motion.

* We design a video prediction model that can incorporate point-flow and depth as ad-
ditional modalities to improve RGB frame prediction.

¢ We conduct extensive experiments on both synthetic and real world datasets, with
several model variants and baselines.

* We find that when integrating point flow, the reappearance of occluded objects and the
background motion are predicted more accurately.

2 Related Work

General Video Prediction Methods. Various neural network architectures have been ex-
plored for video prediction: hybrid models that combine RNNs and CNNs [5, 12, 45]; latent
transformer [43] models [40, 47, 51], where the latent is usually encoded by a VQ-VAE
or VQ-GAN [10, 35, 42] then the prediction is conducted by a transformer; diffusion [17],
latent-diffusion [36] and diffusion-transformer [31] based approaches [26, 56]. Although
the overall performance of these approaches is promising, since they lack explicit object or
motion information, learning to generate complex motion is very expensive in terms of data
and compute.

Optical Flow in Video Prediction. Optical flow is a pixel-wise dense motion estimation
between consecutive video frames. FlowNet [9] and its advanced version [20] is first intro-
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duced to estimate the optical flow through CNN network. Recent optical flow estimation
approaches used vision transformers to achieve the same goal [23, 28, 37]. Because optical
flow contains rich motion information of a dynamic scene, it is integrated to many video
prediction approaches to predict future frames. Li et al [24] first predict the optical flow of
future frames by condition on a single frame, then warp the RGB frame with predicted flow
to achieve video prediction. Shi et al [38] used a similar idea to predict the flow first then
use a diffusion model conditioned on flow to generate RGB frames. Bei et al [2] proposed a
semantic aware approach that predicts the optical flow directly with a ConvLSTM network,
then uses the predicted flow to generate the future frames. Wu et al [48] used optical flow
to optimize the model’s frame interpolation ability to improve the future frame prediction
quality. Liang et al [25] generated video frames based on another video’s optical flow infor-
mation. Optical flow has also been integrated with generative diffusion models to guide the
motion of generated frames to be more realistic [6]. However, error accumulation over time
and the complete loss of information while objects are occluded hampers the effectiveness
of optical flow methods when occlusion occurs.

Point Tracking. Point tracking approaches have recently gained popularity due to their
strong performance [7, 22, 41, 50]. Unlike optical flow estimation, which aims to estimate
the motion of every pixel in an image, point tracking methods typically operate in an encoded
latent space and focus on tracking sparse, semantically meaningful features. Rather than
modeling dense pixel-level motion, these methods estimate the trajectories of key features
across frames, making them more robust to noise, occlusions, and appearance changes. This
abstraction allows tracking-based approaches to better capture high-level motion dynamics
and structural consistency compared to traditional flow-based methods. Several studies have
attempted to integrate point tracking for motion modeling and future trajectory prediction.
For instance, [4] leveraged point tracking to assist robotic arm control in completing various
tasks, achieving superior performance. Point tracking has also been applied to generative
tasks. [21] incorporated point tracking into video diffusion models, enabling more realistic
motion generation.

3 Methodology

3.1 Preliminaries

Let X' = <x1,x27 ...,xT), be a sequence of T RGB frames from a video clip, where x' €
R>W>3 - Our goal is to learn a probability distribution on future frames X7 +1:7+M  condi-
tioned on the past frames X7, We next discuss the base model we build on in this paper, as
well as the models used to extract additional modalities—point-flow and depth.

Base Architecture. We use the Stochastic Class-Attended Transformer (SCAT) [40] as
the backbone structure for our model. SCAT is a recent latent-transformer-based approach
designed for object-centric video prediction. It is a two-staged approach that first trains an
object aware auto-encoder (OAAE) to encode the video frames into latent representations.
Then, a GPT-style transformer is trained on the past latent frames to predict future latent
frames. Finally, the predicted latent frames are decoded via OAAE to reconstruct the pre-
dicted frames. SCAT offers a favorable trade-off between performance and computational
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Figure 1: The overview of the proposed method. First we obtain different modalities by
using Cotracker and DepthAnythingV2; then we use SAM2 to segment the original RGB
frames sequence to decompose the objects, segmentation map from SAM?2 is also used to
decompose the point-flow and depth map; After preprocessing, we first train OAAE to con-
vert the frames into a latent space; then we train SCAT to predict the future latent frames;
finally the predicted latent future frames are reconstructed by trained OAAE; The lower right
box shows how we train a object mask predictor based on trained OAAE’s latent space; after
mask predictor is trained, it is then used solely for evaluating EMD.

cost, using a relatively lightweight transformer module for temporal prediction; it achieves
higher accuracy for similar parameter count versus similar non-object-centric models.

In the first stage, each frame x from a video clip is decomposed by an off-the-shelf in-
stance segmentation model [33] yielding / number of instances with m number of classes.
Each instance is extracted by applying the corresponding mask predicted by the instance
segmentation model. The full frame can be reconstructed by adding all of the masked in-
stances, i.e. x = Zi:] Xy, where X represents the k™ instance. Then, each instance is encoded
by a set of class-specific encoders, denoted as ® = {¢;, ¢, ..., §» }, each of which encodes
instances belonging to one class. Then the encoded latent is quantized by class-specific em-
bedding code books E = {e},e2, ..., ey . Each quantized instance is concatenated to generate
a structured latent representation z that captures the full frame. A joint decoder ¥ then re-
constructs the original video frame x from the latent representation z. To enhance feature
extraction and improve performance, we replace the encoder used in SCAT with SlotDif-
fusion’s frame encoder [49], which uses a ResNet-18 [16] architecture. This modification
provides stronger feature representations, enabling more effective encoding of object-centric
information. Moreover, the latent space is significantly smaller than SCAT’s while maintain-
ing similar or better performance

After the OAAE is trained, video clips are converted from RGB images into latent rep-
resentation using OAAE. Since each frame contains structured information of the instances,
we can represent instances sequence as Zy = {z,l,zﬁ, ...,z,{ |k =1,2,...,I}, then the sequence
representing the full scene can also obtained additively by summing all instance sequences
as Z = ):szl 7, In second stage, SCAT uses class-specific transformer blocks for each se-
mantic class, similarly to the first stage. It models the motion pattern of an instance k with
self-attention individually (eq. 1), as well as the potential relationship with other instances
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via cross-attention (eq. 1) as shown in the equation blow:

SA.(Z;) = softmax (QkKkT) Vi, CA(Z) = @ softmax (QkKiT> V. (1)
Vi LNtk Vi

where € denotes concatenation operation; The cross-attention layer’s output, being I — 1
times larger than the input because of concatenation, is reduced to the original size through a
linear layer. Additionally, each transformer block’s attention mechanism further operates on
spatial and temporal dimensions to effectively capture both spatial and temporal dependen-
cies, following [3], both within instance k and across other instances. The final output is a
probability distribution over OAAE codebook indices for each instance in each future frame.

Point Tracking with Cotracker. Cotracker [22] is a transformer-based model that tracks
2D points in video sequences. First, the query points are initialized on the first frame of a
video clip, with their initial positions and visibility. A point P, at time step ¢ is represented as
Pl = (x,y)) € R? fort € {1,...,T}. Itis set to make all points visible after it is initialized
at the first time step (e.g first frame of a video clip) to reduce ambiguity. After the points are
initialized, an end-to-end CNN network is trained to obtain the feature map of the frames.
Then each point is projected to the relative position on the feature map, and the corresponding
feature is selected for the point. Finally, a transformer model is trained iteratively to learn
how these points and selected feature maps are correlated. The objective of this model is to

minimize the distance between the predicted and ground truth point locations.

Depth Estimation with DepthAnything-V2. Depth Anything [53, 54] is a monocular
depth estimation model designed to generalize well across diverse real-world scenes. It fol-
lows a semi-supervised learning approach, where a teacher-student framework is employed
to leverage both synthetic and real data. Initially, a teacher network is trained on a large-
scale synthetic dataset with dense ground-truth depth annotations. This teacher is then used
to pseudo-label a large corpus of real-world unlabeled images, effectively transferring its
knowledge to real data. Finally, a student network is trained on a mixture of these pseudo-
labeled real images and a small set of manually labeled real-world samples. The model takes
a single RGB frame as input and produces a dense depth map as output. We use the second
version as our depth estimator for video frames.

3.2 Proposed Method

SCAT [40] decomposes a video into object instances, and an instance that becomes com-
pletely occluded at a certain time step is not visible to the encoder. This makes it difficult
to predict the motion of fully occluded objects, even when explicit visual information about
these objects is available. We therefore propose incorporating tracked points from Cotracker
as point-flows, providing additional information to the prediction model. Point-flows offer a
more effective and robust alternative to optical flow for achieving object tracking, as optical
flow tends to accumulate errors over time [15]. By utilizing point-flows, the encoder can
retain information about an instance’s position at a certain time step ¢, even when its RGB
image is entirely absent due to complete occlusion.

We hypothesize that incorporating point-flows alongside RGB frames during encoding
will enrich the latent representations with relative location information. Therefore, the mo-
tion of occluded objects can be predicted more accurately. Depth images are integrated as
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a another modality to our model, providing geometric context that is invariant to appear-
ance changes. While point flows capture motion, depth encodes scene structure, aiding in
disambiguating object movement and handling occlusions—especially under camera mo-
tion—thus improving spatial and temporal reasoning. It is important to note that we do not
require any additional or richer information to train our model. Instead, we use pretrained
models solely to preprocess the available RGB sequences, generating point-flow and depth
images from the same input data used by existing baselines. Following SCAT, we test our
hypothesis by designing a family of models with varying input configurations: SCAT-D,
trained with RGB frames and depth frames; SCAT-P, trained with RGB frames and point-
flows; and SCAT-DP trained with RGB frames, depth images, and point-flows.

Point flow and Depth. We first use Cotracker to track points in a video clip, then calculate
the point-flow as the displacements of each point between consecutive frames. For the initial
time step (r = 0), there are no displacements, as the points are treated as the initial reference
positions, represented by a tensor of shape (T,N,3), where T is the number of frames, N
is the number of points, and 3 represents the (h,w) coordinates and visibility. From the
second frame and onward (¢ > 1), the horizontal and vertical displacements of each point are
calculated as the difference between the current and previous positions. Finally, since each
point is defined by its (h,w) coordinates, the displacement information is mapped to a grid
with the same size as the image, resulting in a tensor of shape (T,H,W,3), where H and W
represent the height and width of the video frame resolution. The last dimension encodes
horizontal displacement, vertical displacement, and visibility. We therefore have

(0,0,1), ifr =0,

(hf = h_ owi —wi_ ), ifr>0.

PointFlow(T,H,W,3) = { )

where PointFlow (T, H,W,3) is the displacement tensor, x; , and y; , are the (h,w) coordi-
nates of the n'" point and v, , is the visibility of the n'”* point at time step #. (H,W) corre-
sponds to the pixel grid location in the image, derived from the (h,w) coordinates of each
point. This mapping ensures that the point-flows retain spatial correspondence with the video
frames, enabling effective integration with the encoder.

For depth images, we employ an off-the-shelf depth estimation model [53] to generate
the depth information for non-synthesized datasets. Since a video sequence is composed of
instance sequences, the corresponding points and depth information are extracted via seg-
mentation map used to decomposed the instances.

After we obtain these modalities, we concatenate them with the original RGB frame on
the channel dimension to form the input of the encoder. Then, all of these information will
be encoded together according to different variants of our proposed method. Finally, the
model’s output is not just a single RGB frames but as well as other modalities. This makes
sure that other modalities will be encoded to the latent space.

Loss Function. Since our approach has two stages, we need to train the frame encoder first
and then train the temporal predictor. For the frame encoder, we modify the original VQ-
loss and Commitment Loss to fit our model design. We extend VQ loss for each semantic
class separately because each instance is encoded via a class-specific encoder and codebook,
then the overall reconstruction loss for RGB images, depths and point-flows is calculated.
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Ly, Lrecon is shown below:

ne

EVQ - Z Z ||Sg Zk eC||§7 L commitment = Z Z || ec ||2

c=lk= c=1lk=

Lrecon = _Ing(xPP(q)(x))) 3)

where sg denotes the stop-gradient operator, n. represents the number of instances in class
¢, and e, corresponds to the codebook for class ¢, respectively. We also include LPIPS [57]
as an additional reconstruction loss:

Lyprps (x, ¥(P ZWZW’Z O(P(D()))I3 “4)

where ¢;(x) represents the deep feature maps extracted from the /-th layer of a pretrained
network ¢. The term w; is a learned weight that adjusts the contribution of each layer to
the overall similarity, and || - |3 denotes the squared Euclidean distance between feature rep-
resentations. The final objective of our encoder will be summing all loss terms together as
L= [fVQ + £c0mmitment + [frecon + ELPIPS~

For the transformer model that predicts future frames in latent space, we use the same
formulation as SCAT, i.e. minimizing the cross entropy between target and predicted indices.

4 Experiments

We first conduct a series of experiments to analyze the impact of each additional modality
on future frame prediction using the proposed family of models. Our primary focus is on
evaluating occluded scenarios under controlled settings, enabling a systematic assessment of
how well each modality improves performance in handling occlusions. We focus our eval-
uation on the predicted RGB frames and moving object’s mask but not the other modalities
which are simply regarded as guidance for the model. To demonstrate the generality of the
proposed method, we also evaluate it on more diverse scenarios and compare its performance
against other baselines. In each experiment, we follow SCAT’s experimental setups, where
the proposed model is required to predict 5 to 20 future frames given five input frames. All
experiments are conducted on a single NVIDIA RTX 3090 GPU, and the model sizes (e.g.,
number of parameters) of other baselines are adjusted accordingly to ensure a fair compari-
son.

4.1 Datasets

Kubric Occlusion: The hypothesis of this paper is that incorporating point-flow can im-
prove the performance of prediction models, particularly in scenarios involving occlusions.
To test this, we used Kubric [14] to generate video clips tailored for our evaluation, which we
refer as Kubric-Occlusion. A total of 1,800 video clips were generated, with 1,300 used for
training and 500 for testing. In each clip, one object remains stationary at a random location,
while another object appears at a random position and moves behind the stationary object,
creating an occlusion event.
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KITTI: The KITTI dataset [13] is a widely used benchmark for autonomous driving re-
search. It contains diverse driving scenarios captured in urban, residential, and highway
environments. In this work, we use a subset of KITTI, specifically selecting scenes from
city, residential, and road categories. We first preprocess the dataset to obtain all of the car
instances; then, we sort the segmented car instances by size and select the largest four as fore-
ground objects; the remainder of the image is categorized as background. After processing,
2,497 clips are used as training and 639 for testing (each clip contains 10 frames).

4.2 Evaluation Metrics

We evaluate the pixel-level quality of predicted frames using standard metrics: PSNR[18],
LPIPS[58], and SSIM[46]. However, since the primary focus of our work is on assessing
motion in the predicted frames, appearance-based metrics alone are insufficient to capture
the dynamic aspects of prediction quality. To address this, we introduce the optical flow
difference (OFD), which measures the discrepancy in motion between predicted and ground
truth frames. Optical flow is computed using the Gunnar-Farneback method [11], the mo-
tion accuracy is then quantified by calculating the mean squared error (L, loss) between the
predicted and ground truth flows.

In addition to global motion assessment via OFD, we further evaluate motion quality
at the instance level. We train a mask predictor to predict instance masks from the trained
VQ-VAE latent space, and use this to estimate masks for predicted frames. We then compute
the Earth Mover’s Distance (EMD) (also known as Wasserstein distance) between the ground
truth masks. While OFD captures overall scene motion, EMD provides a finer-grained analy-
sis of motion distribution differences, offering a more accurate reflection of motion quality in
predicted frames. EMD we use in our paper is defined as follows: Let , = {p1,...,pm} C R2
be the set of pixel coordinates for the predicted mask, and G; = {gi,...,g,} C R? be the set
of pixel coordinates for the ground truth mask. We define uniform dlscrete distributions over
these sets: a = (%7,%) eEA™, b= (%,,%) € A" Let M € R™*" be the cost matrix
with entries: M;; = ||p; — g;||> The Earth Mover’s Distance (squared Wasserstein distance)
is computed as the optimal transport cost:

EMD?*(P,G) = min T;iM;
( TeU(ab IZ{]Z i

where U(a,b) = {T € R"" | T1, =a, T '1,, = b} is the set of admissible transport plans.
All metrics are computed on a per-frame basis, and the values reported in the table represent
the mean over all frames across the clips in the respective dataset.

4.3 Results

In this section, we first evaluate the proposed family of models by comparing their perfor-
mance internally on occluded and general scenarios with backround motion. Then we select
the best performing model to compare against other similar approaches. The goal is to ana-
lyze the contribution of each additional modality (point-flow, depth, or both) and determine
which variant performs best under different conditions. By conducting these internal exper-
iments, we aim to identify the most effective model configuration before benchmarking it
against other similar approaches.
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Figure 2: Comparison of different model variants on the Kubric-Occlusion (Left) and
KITTI (Right) dataset.
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Kubric-Occlusion KITTI
PSNR? SSIM? LPIPS| OFD/ EMD| Prms| PSNRT SSIM? LPIPS| OFD) EMD| Prms
SCAT 25.88+0.13 0.658+0.007 0.064+0.001 0.0423+0.0017 0.0081+0.0005 11M |15.33+0.13 0.473+0.006 0.13540.003 2.5776+0.3341 0.03104+0.0016 8M

SCAT-P  25.9940.13 0.665+0.007 0.063+0.001 0.0356+£0.0016 0.0070+0.0006 11M
SCAT-D  26.5340.13 0.701+0.006 0.054+0.001 0.0414+0.0019 0.0069+0.0004 11M
SCAT-PD 25.6940.12 0.649+0.007 0.072+0.002 0.0347+0.0014 0.0066+-0.0004 11M

Table 1: Quantitative results on Kubric-Occlusion and KITTI dataset

15.2040.11 0.448+0.006 0.155+0.003 1.6659+0.1939 0.0282+0.0020 8M
15.5340.12 0.465+0.006 0.13240.003 3.2781+0.4762 0.0285+0.0022 8M
15.3640.11 0.445+0.006 0.137+0.002 1.6390-0.2324 0.0278+0.0016 8M

From Table 1, we can see that on the Kubric-occlusion dataset, all proposed variants
improve on plain SCAT in terms of motion metrics. This confirms our hypothesis that flow
and depth modalities are important for occlusion prediction. Interestingly, the SCAT-D vari-
ant achieves the best performance for appearance metrics (PSNR, SSIM & LPIPS), and
SCAT-P achieves the best results for motion-relevant metrics (OFD & EMD). We found
the performance of the SCAT-PD variant to be generally lower than the two other (SCAT-P
and SCAT-D), which is likely a consequence of processing larger input data with the same
model size. In Figure 2, we can also see the qualitative results reflect the quantitative scores:
The occluded object’s reappearance is only predicted correctly when point flow is integrated
(SCAT-P and -PD), confirming the evidence provided by the OFD and EMD metrics.

Table 2 provide a comparison to SimVP and plain SCAT. The proposed model appear to
underperform SimVP when looking at appearance-based metrics on the Kubric-Occlusion
dataset, however they perform much better when looking at motion-based metrics. This con-
trast can be explained by the comparatively small impact of moving objects on appearance
metrics versus background noise, which is likely reduced by the larger size of the SimVP
model. This intuition is confirmed by the qualitative results shown in Figure 2, where SCAT-
P & SCAT-DP predict accurately the motion of moving objects while others fail. Specifically,

Kubric-Occlusion KITTI
PSNRT SSIM?T LPIPS| OFD] Num-Params ~ PSNR?T SSIMT LPIPS) OFD| Num-Params
SCAT 25.88+0.13 0.6640.007 0.064+0.001 0.0423+0.0017 11IM 15.3340.13 0.4740.006 0.135+0.002 2.49+0.33 &M
SimVP 33.0530.13 0.954-0.001 0.021+0.001 0.0626+0.0019 14M 17.1410.10 0.491-0.005 0.332+0.004 1.6630.11 14M
Ours  25.6940.12 0.6540.007 0.072+0.002 0.0347+0.0014 11IM 15.36+0.11 0.45+0.006 0.137+0.002 1.64+0.23 &M

Table 2: Comparison to previous works on Kubric-Occlusion and KITTI dataset
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the trajectory of the moving object in Kubric-Occlusion (left) dataset is correctly predicted
only when including point-flow information (SCAT-P & SCAT-PD), while SimVP fails to
predict the object’s reappearance.

In contrast, where KITTTI features complex real world dynamics, our model outperforms
SimVP in LPIPS (0.137 v 0.332). Also, we see that in terms of motion our model also out-
performed SimVP (1.64 v 1.66), this can be seen in Figure 2 (right). The Figure 2 shows
clear evidence that when the point-flow is integrated, the backgorund motion is predicted ac-
curately (SCAT-P, D & PD) versus RGB-only variants. It is important to note that our SCAT
variants are nearly two times smaller than SimVP and achieved similar or better performance
in terms of motion accuracy.

5 Conclusion

We propose a video prediction pipeline that investigates the impact of adding point track-
ing and depth information on future frame prediction. Our method incorporates point-flow
and depth maps to enhance motion prediction, particularly in challenging scenarios with oc-
clusions and background motion. Experimental results show that point-flow contributes to
more accurate motion estimation, and in particular can successfully predict the reappearance
of occluded moving objects. However, while adding multiple modalities improves general
motion prediction, the additional input information can degrade pixel-level appearance qual-
ity when keeping model size constant. In future work, we aim to explore strategies for a
better integration of diverse modalities and improving reconstruction fidelity.

References

[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Luci¢, and
Cordelia Schmid. Vivit: A video vision transformer. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 6836—6846, 2021.

[2] Xinzhu Bei, Yanchao Yang, and Stefano Soatto. Learning semantic-aware dynamics
for video prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 902-912, 2021.

[3] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you
need for video understanding? 1In International Conference on Machine Learning
(ICML), volume 2, page 4, 2021.

[4] Homanga Bharadhwaj, Roozbeh Mottaghi, Abhinav Gupta, and Shubham Tulsiani.
Track2act: Predicting point tracks from internet videos enables generalizable robot
manipulation. In European Conference on Computer Vision (ECCV), 2024.

[5] Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xiang Xinguang,
and Wen Gao. Mau: A motion-aware unit for video prediction and beyond. Advances
in Neural Information Processing Systems, 34:26950-26962, 2021.

[6] Hila Chefer, Uriel Singer, Amit Zohar, Yuval Kirstain, Adam Polyak, Yaniv Taigman,
Lior Wolf, and Shelly Sheynin. Videojam: Joint appearance-motion representations for
enhanced motion generation in video models. arXiv preprint arXiv:2502.02492, 2025.



SULEYMAN ET AL.: FLOW AND DEPTH ASSISTED VIDEO PREDICTION 11

[7]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Seokju Cho, Jiahui Huang, Seungryong Kim, and Joon-Young Lee. Flowtrack: Re-
visiting optical flow for long-range dense tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 19268-19277, 2024.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recog-
nition at scale. arXiv preprint arXiv:2010.11929, 2020.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,
Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2758-2766, 2015.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-
resolution image synthesis. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 12873—12883, 2021.

Gunnar Farnebédck. Two-frame motion estimation based on polynomial expansion. In
Image Analysis: 13th Scandinavian Conference, SCIA 2003 Halmstad, Sweden, June
29—July 2, 2003 Proceedings 13, pages 363-370. Springer, 2003.

Zhangyang Gao, Cheng Tan, Lirong Wu, and Stan Z Li. Simvp: Simpler yet better
video prediction. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 3170-3180, 2022.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets
robotics: The kitti dataset. The International Journal of Robotics Research, 32(11):
1231-1237, 2013.

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duck-
worth, David J Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, et al.
Kubric: A scalable dataset generator. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3749-3761, 2022.

Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. Particle video revisited:
Tracking through occlusions using point trajectories. In European Conference on Com-
puter Vision, pages 59-75. Springer, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770-778, 2016.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi,
and David J Fleet. Video diffusion models. Advances in Neural Information Processing
Systems, 35:8633-8646, 2022.

Alain Horé and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th
International Conference on Pattern Recognition, pages 23662369, 2010. doi: 10.
1109/ICPR.2010.579.

Yucheng Hu, Yanjiang Guo, Pengchao Wang, Xiaoyu Chen, Yen-Jen Wang, Jianke
Zhang, Koushil Sreenath, Chaochao Lu, and Jianyu Chen. Video prediction pol-
icy: A generalist robot policy with predictive visual representations. arXiv preprint
arXiv:2412.14803, 2024.



12

SULEYMAN ET AL.: FLOW AND DEPTH ASSISTED VIDEO PREDICTION

(20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and
Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2462-2470, 2017.

Hyeonho Jeong, Chun-Hao Paul Huang, Jong Chul Ye, Niloy Mitra, and Duygu Ceylan.
Track4gen: Teaching video diffusion models to track points improves video generation.
arXiv preprint arXiv:2412.06016, 2024.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi,
and Christian Rupprecht. Cotracker: It is better to track together. In European Confer-
ence on Computer Vision, pages 18-35. Springer, 2025.

Guillaume Le Moing, Jean Ponce, and Cordelia Schmid. Dense optical tracking: con-
necting the dots. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 19187-19197, 2024.

Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang.
Flow-grounded spatial-temporal video prediction from still images. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 600-615, 2018.

Feng Liang, Bichen Wu, Jialiang Wang, Licheng Yu, Kunpeng Li, Yinan Zhao, Ishan
Misra, Jia-Bin Huang, Peizhao Zhang, Peter Vajda, et al. Flowvid: Taming imperfect
optical flows for consistent video-to-video synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8207-8216, 2024.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing
Yuan, Yue Huang, Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background,
technology, limitations, and opportunities of large vision models. arXiv preprint
arXiv:2402.17177, 2024.

Wei Lu, Junyun Cui, Yanshuo Chang, and Longmei Zhang. A video prediction method
based on optical flow estimation and pixel generation. IEEE Access, 9:100395-100406,
2021.

Yawen Lu, Qifan Wang, Siqi Ma, Tong Geng, Yingjie Victor Chen, Huaijin Chen,
and Dongfang Liu. Transflow: Transformer as flow learner. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pages 18063—
18073, 2023.

Weixin Luo, Wen Liu, Dongze Lian, and Shenghua Gao. Future frame prediction net-
work for video anomaly detection. IEEE transactions on pattern analysis and machine
intelligence, 44(11):7505-7520, 2021.

Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian
Chen, and Yu Qiao. Latte: Latent diffusion transformer for video generation. arXiv
preprint arXiv:2401.03048, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
4195-4205, 2023.



SULEYMAN ET AL.: FLOW AND DEPTH ASSISTED VIDEO PREDICTION 13

[32] Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, Denis Zorin, and Evgeny Bur-
naev. Latent video transformer. arXiv preprint arXiv:2006.10704, 2020.

[33] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu
Ma, Haitham Khedr, Roman Ridle, Chloe Rolland, Laura Gustafson, Eric Mintun,
Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick,
Piotr Dollar, and Christoph Feichtenhofer. SAM 2: Segment anything in images and
videos. arXiv preprint arXiv:2408.00714, 2024.

[34] Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr
Mirowski, Megan Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge,
et al. Skilful precipitation nowcasting using deep generative models of radar. Nature,
597(7878):672-677, 2021.

[35] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity
images with vg-vae-2. Advances in neural information processing systems, 32, 2019.

[36] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Om-
mer. High-resolution image synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 10684—
10695, 2022.

[37] Xiaoyu Shi, Zhaoyang Huang, Dasong Li, Manyuan Zhang, Ka Chun Cheung, Simon
See, Hongwei Qin, Jifeng Dai, and Hongsheng Li. Flowformer++: Masked cost volume
autoencoding for pretraining optical flow estimation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 1599-1610, 2023.

[38] Xiaoyu Shi, Zhaoyang Huang, Fu-Yun Wang, Weikang Bian, Dasong Li, Yi Zhang,
Manyuan Zhang, Ka Chun Cheung, Simon See, Hongwei Qin, et al. Motion-i2v: Con-
sistent and controllable image-to-video generation with explicit motion modeling. In
ACM SIGGRAPH 2024 Conference Papers, pages 1-11, 2024.

[39] Binit Singh, Divij Singh, Rohan Kaushal, Agrya Halder, and Pratik Chattopadhyay.
Gsstu: Generative spatial self-attention transformer unit for enhanced video prediction.
IEEE Transactions on Neural Networks and Learning Systems, 2024.

[40] Eliyas Suleyman, Paul Henderson, and Nicolas Pugeault. On the benefits of instance
decomposition in video prediction models. arXiv preprint arXiv:2501.10562, 2025.

[41] Narek Tumanyan, Assaf Singer, Shai Bagon, and Tali Dekel. Dino-tracker: Taming
dino for self-supervised point tracking in a single video. In European Conference on
Computer Vision, pages 367-385. Springer, 2024.

[42] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning.
Advances in neural information processing systems, 30, 2017.

[43] A Vaswani. Attention is all you need. Advances in Neural Information Processing
Systems, 2017.

[44] Xiaofeng Wang, Zheng Zhu, Guan Huang, Boyuan Wang, Xinze Chen, and Jiwen
Lu. Worlddreamer: Towards general world models for video generation via predict-
ing masked tokens. arXiv preprint arXiv:2401.09985, 2024.



14

SULEYMAN ET AL.: FLOW AND DEPTH ASSISTED VIDEO PREDICTION

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, S Yu Philip, and
Mingsheng Long. Predrnn: A recurrent neural network for spatiotemporal predictive
learning. [EEE Transactions on Pattern Analysis and Machine Intelligence, 45(2):
2208-2225, 2022.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing,
13(4):600-612, 2004. doi: 10.1109/TIP.2003.819861.

Jialong Wu, Shaofeng Yin, Ningya Feng, Xu He, Dong Li, Jianye Hao, and Mingsheng
Long. ivideogpt: Interactive videogpts are scalable world models. arXiv preprint
arXiv:2405.15223, 2024.

Yue Wu, Qiang Wen, and Qifeng Chen. Optimizing video prediction via video frame
interpolation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 17814—17823, 2022.

Ziyi Wu, Jingyu Hu, Wuyue Lu, Igor Gilitschenski, and Animesh Garg. Slotdiffu-
sion: Object-centric generative modeling with diffusion models. Advances in Neural
Information Processing Systems, 36:50932-50958, 2023.

Yuxi Xiao, Qiangian Wang, Shangzhan Zhang, Nan Xue, Sida Peng, Yujun Shen, and
Xiaowei Zhou. Spatialtracker: Tracking any 2d pixels in 3d space. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20406—
20417, 2024.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video
generation using vq-vae and transformers. arXiv preprint arXiv:2104.10157, 2021.

Jiazhi Yang, Shenyuan Gao, Yihang Qiu, Li Chen, Tianyu Li, Bo Dai, Kashyap Chitta,
Penghao Wu, Jia Zeng, Ping Luo, Jun Zhang, Andreas Geiger, Yu Qiao, and Hongyang
Li. Generalized predictive model for autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
14662-14672, June 2024.

Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang
Zhao. Depth anything: Unleashing the power of large-scale unlabeled data. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10371-10381, 2024.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and
Hengshuang Zhao. Depth anything v2. arXiv preprint arXiv:2406.09414, 2024.

Xi Ye and Guillaume-Alexandre Bilodeau. Video prediction by efficient transformers.
Image and Vision Computing, 130:104612, 2023.

Shengming Yin, Chenfei Wu, Huan Yang, Jianfeng Wang, Xiaodong Wang, Minheng
Ni, Zhengyuan Yang, Linjie Li, Shuguang Liu, Fan Yang, et al. Nuwa-xl: Diffusion
over diffusion for extremely long video generation. arXiv preprint arXiv:2303.12346,
2023.



SULEYMAN ET AL.: FLOW AND DEPTH ASSISTED VIDEO PREDICTION 15

[57] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep features as a perceptual metric. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 586595,
2018.

[58] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep features as a perceptual metric. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 586—595,
2018.

[59] Zhicheng Zhang, Junyao Hu, Wentao Cheng, Danda Paudel, and Jufeng Yang. Extdm:
Distribution extrapolation diffusion model for video prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19310-
19320, 2024.



