
SAEED, HAQ, MALIK: REALISM TO DECEPTION 1

Realism to Deception: Investigating

Deepfake Detectors Against Face

Enhancement

Muhammad Saad Saeed

msaads@umich.edu

Ijaz Ul Haq

ijazhaq@umich.edu

Khalid Malik

drmalik@umich.edu

SMILES Lab,

College of Innovation & Technology,

University of Michigan-Flint, Flint, USA

Abstract

Face enhancement techniques are widely used to enhance facial appearance. How-

ever, they can inadvertently distort biometric features, leading to significant decrease in

the accuracy of deepfake detectors. This study hypothesizes that these techniques, while

improving perceptual quality, can degrade the performance of deepfake detectors. To

investigate this, we systematically evaluate whether commonly used face enhancement

methods can serve an anti-forensic role by reducing detection accuracy. We use both tra-

ditional image processing methods and advanced GAN-based enhancements to evaluate

the robustness of deepfake detectors. We provide a comprehensive analysis of the effec-

tiveness of these enhancement techniques, focusing on their impact on Naïve, Spatial,

and Frequency-based detection methods. Furthermore, we conduct adversarial training

experiments to assess whether exposure to face enhancement transformations improves

model robustness. Experiments conducted on the FaceForensics++, DeepFakeDetection,

and CelebDF-v2 datasets indicate that even basic enhancement filters can significantly

reduce detection accuracy achieving ASR up to 64.63%. In contrast, GAN-based tech-

niques further exploit these vulnerabilities, achieving ASR up to 75.12%. Our results

demonstrate that face enhancement methods can effectively function as anti-forensic

tools, emphasizing the need for more resilient and adaptive forensic methods.

1 Introduction

Recent advancements in deepfake generation techniques have enabled the creation of syn-

thetic media to the extent that it now appears almost indistinguishable from reality [18].

Although these breakthroughs have played a positive role in entertainment, and other ap-

plications, they also pose significant threats, including misinformation, fraud, and privacy

violations [11]. Researchers around the world have developed various deepfake detection

methods including naïve [17, 19], spatial [15, 26], and frequency [13, 16] based methods.

Despite their promising performance, deepfake detectors remain vulnerable to adversarial

attacks that exploit their sensitivity to carefully crafted perturbations. These distortions are

often imperceptible to human eye, but can significantly reduce detection accuracy [22].
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Figure 1: Using face enhancement as anti-forensic in deepfake detectors (left).Naïve, Spa-

tial, and Frequency-based detection methods with average attack success rates (ASR↑) across

various enhancement methods (right). Best viewed in color and zoomed in.

Unlike the existing studies that explore adversarial attacks specifically designed for deep-

fake detection models, we focus on methods from face enhancement domain such as skin

smoothing, and detail enhancement. These face enhancement techniques, while designed to

improve perceptual quality, can act as anti-forensic attack by concealing artifacts and cues

that deepfake detectors rely upon. This dual role not only challenges the robustness of deep-

fake detection systems but also introduces an additional layer of complexity by misleading

human perception. Figure 1 shows how face enhancement reduces accuracy across various

detectors, raising concerns about their anti-forensic potential and implications for both au-

tomated systems and human judgment. To further explore this dual characteristics of face

enhancement methods, this paper answers the following research questions:

• Are face enhancement filters effective as anti-forensic attacks?

• To what extent do face enhancement methods exhibit anti-forensic capabilities against

Naïve, Spatial, and Frequency-based deepfake detectors?

• What are the trade-offs between perceptual quality and detection evasion when applying

face enhancement methods?

• Can adversarial training mitigate the anti-forensic effects of face enhancement methods?

By investigating these questions, we aim to bridge the gap between forensic frameworks

and real-world scenarios where face-enhancement methods may degrade detection perfor-

mance, providing a deeper understanding of deepfake detection vulnerabilities. Our contri-

butions are summarized below:

• We analyze and demonstrate that face enhancement techniques can effectively deceive

state-of-the-art deepfake detectors.

• We further analyze that applying face enhancement filters not only evades detection but

also enhances the visual realism of deepfake videos by minimizing artifact traces, making

them imperceptible to the human eye.

• We experimentally prove that these enhancement techniques can generalize across diverse

categories of detectors, including Naïve, Spatial, and Frequency-based methods, highlight-

ing their anti-forensic impact on detection performance.
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2 Literature review

Several studies have explored adversarial attacks within the broader context of computer vi-

sion and neural networks [23]. An early study by Carlini and Wagner [4] highlighted the

vulnerability of neural networks to imperceptible perturbations. Similarly, Li et al. [12] pro-

posed frequency domain regularization for iterative adversarial attacks, crafting impercep-

tible yet highly effective perturbations. Beyond these foundational studies, several studies

focus specifically on adversarial challenges within the domain of deepfake detection [5, 6].

For instance, Hussain et al. [9] propose adversarial perturbations that can bypass DNN-

based Deepfake detectors in both white- and black-box attack scenarios, even under com-

pression, posing a significant real-world threat. Ain et al. [2] demonstrate that visually

natural perturbations, such as perceptual facial moles, can significantly undermine detection

accuracy. Hou et al. [7] propose statistical consistency attack named StatAttack, that min-

imizes the statistical differences between real and fake images using natural degradations

and distribution-aware loss effectively bypassing spatial and frequency-based deepfake de-

tectors. Carlini et al. [3] explored latent-space perturbations within the generative model to

produce adversarial images that evade deepfake detectors. Huang et al. [8] proposed Fake-

Polisher, a learning-based reconstruction method that suppresses GAN synthesis footprints,

significantly degrading state-of-the-art deepfake detectors and revealing their reliance on

low-level artifacts. Ivanovska et al. [10] examined single-image deepfake detector vulnera-

bilities to black-box attacks via Denoising Diffusion Models, showing that even one guided

denoising step can markedly lower detection rates without visible changes. Despite these

advances, most existing studies focus predominantly on mathematical perturbations, such as

noise-based or gradient-guided methods [14]. They often neglect the potential of practical,

real-world techniques like face enhancement filters, which can serve as both perceptual im-

provement tools and detection evading mechanisms. This gap highlights the need for further

research into practical attacks that can effectively bypass deepfake detection systems while

maintaining high perceptual realism.

3 Design of the empirical study

3.1 Datasets and evaluation metrics

We evaluate face enhancement methods against deepfake detectors using FaceForensics++

(c23), DeepFakeDetection (c23), and CelebDF-v2. Every fifth frame of real and fake videos

is sampled for balanced representation, adhering to the standard train-test splits. All six

deepfake detectors are trained under identical settings with a batch size of 32, and early

stopping is employed to mitigate overfitting. Perceptual quality is measured with SSIM,

PSNR, and LPIPS, while detection degradation is reported via attack success rate (ASR),

defined as the proportion of fake samples misclassified as real.

3.2 Face enhancement methods

To conduct this empirical study, we select six face enhancement techniques and apply them

to regenerate the deepfake datasets accordingly. These techniques span classical spatial

smoothing, transform-domain smoothing, and generative restoration approaches.

M1: Gaussian Smoothing [20] is a common face enhancement technique used to reduce im-
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perfections such as blemishes, wrinkles, and uneven textures by applying a weighted average

to surrounding pixels.

M2: Bilateral Filtering [21] is another smoothing technique that reduces the prominence

of uneven skin tones while preserving important edge details on the face. Bilateral filtering

operates by averaging pixel values based on both spatial proximity and intensity similarity.

M3: Spectral Smoothing [1] is a frequency-domain low-pass filtering technique that selec-

tively suppresses high-frequency components. The image is transformed via the Discrete

Fourier Transform (DFT).

M4: FabSoften [24] enhances facial aesthetics by dynamically smoothing skin blemishes,

guided by facial attributes such as blemish density and texture coarseness, and restores nat-

ural skin texture through wavelet-based manipulations.

M5: GFPGAN [25] is a blind face restoration approach leveraging a Generative Facial Prior

from a pretrained StyleGAN2 model. GFPGAN jointly performs degradation removal and

detail restoration in a single forward pass.

M6: FabSoften + GFPGAN combines wavelet-domain smoothing with generative restora-

tion. First, we apply FabSoften to suppress high-frequency blemishes, followed by GFPGAN

to reconstruct perceptually convincing facial details.

3.3 Deepfake detectors

For this empirical study, we selected six deepfake detection methods, comprising two promi-

nent deepfake detectors of each category—Naïve, Spatial, and Frequency-based.

3.3.1 Naïve deepfake detectors

These methods generally use CNNs to directly differentiate between deepfake and genuine

media. While computationally efficient, they are vulnerable to reductions in accuracy caused

by subtle modifications and enhancements that exhibit anti-forensic effects.

EfficientNet-B4[19] is one of the widely used CNN in deepfake detection due to its highly

optimized architecture, which balances model depth, width, and resolution for superior per-

formance. Its compound scaling approach allows it to efficiently capture fine-grained spatial

details and subtle manipulations in deepfake images and videos.

Xception [17] is popular in deepfake detection due to its superior feature extraction capabil-

ities. Xception leverages depth-wise separable convolutions to efficiently capture spatial and

channel-wise relationships, making it highly effective in identifying deepfake artifacts.

3.3.2 Spatial deepfake detectors

These detectors leverage deep neural networks to analyze pixel-level information, focusing

on spatial inconsistencies in texture, or lighting making them effective for high-resolution

images.

CORE [15] captures different representations of the same sample via different augmenta-

tions. The framework explicitly enforces representation consistency across different aug-

mented views through a cosine-based Consistency Loss.

UCF [26] employs a multi-task disentanglement framework to tackle two challenges: over-

fitting to irrelevant features and overfitting to method-specific textures. By extracting shared

features, the framework addresses these issues while improving generalization capability.
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Table 1: ASR of face enhancement methods against deepfake detectors. Results are reported

across FaceForensics++ (FF++), DeepfakeDetection (DFD), and Celeb-DFv2 (CDFv2).

Category Method

Gaussian Blur Bilateral Filter Spectral Smooth FabSoften GFP-GAN FabSoften+GFPGAN

FF++ DFD CDFv2 FF++ DFD CDFv2 FF++ DFD CDFv2 FF++ DFD CDFv2 FF++ DFD CDFv2 FF++ DFD CDFv2

Naïve
EffNetB4 40.78 42.85 51.36 47.91 48.97 58.17 46.64 39.92 41.46 56.77 64.46 62.53 68.85 55.49 54.43 72.12 87.39 78.60

Xception 42.15 41.88 52.68 44.66 44.15 61.37 47.22 34.89 46.07 63.12 65.65 64.08 62.16 58.21 51.70 76.25 85.97 77.29

Spatial
Core 38.99 44.44 49.10 43.31 50.86 53.67 42.48 40.17 41.37 55.83 63.96 61.19 59.12 54.73 56.46 76.95 80.33 79.22

UCF 36.05 43.82 48.88 41.18 50.26 52.13 45.07 44.14 43.68 59.97 62.03 64.63 55.96 52.65 54.87 73.29 80.50 78.97

Frequency
F3Net 36.71 42.57 50.02 43.91 49.81 55.87 56.30 41.78 46.37 63.81 63.39 69.92 62.80 53.54 57.25 71.34 80.39 80.16

SPSL 36.59 41.34 48.66 48.05 55.55 50.92 58.96 48.81 51.87 65.45 65.35 68.38 64.17 55.97 60.82 74.83 80.33 83.75

(a) FF++ (b) DFD (c) CelebDF-v2
Figure 2: Deepfake detector AUC across FaceForensics++ (FF++), DeepfakeDetection

(DFD), and Celeb-DFv2 datasets.

3.3.3 Frequency deepfake detectors

Frequency-based methods target manipulations by identifying anomalies in low or high fre-

quency components. They are particularly robust against compressed inputs, but may strug-

gle when modifications involve frequency-domain alterations.

F3Net [16] employs a cross-attention two-stream network to collaboratively learn frequency-

aware features from two branches: FAD and LFS. The FAD module divides the input image

using learnable frequency bands to extract frequency-aware components. The LFS module

captures localized frequency statistics to highlight differences between real and fake faces.

SPSL [13] integrates spatial image features with the phase spectrum to detect up-sampling

artifacts in face forgeries, enhancing transferability and generalization for face forgery de-

tection. This method employs Xception as the backbone architecture.

4 Experimental evaluations

4.1 Deepfake detection performance under face enhancement

To evaluate the effectiveness of face enhancement techniques as anti-forensic attacks, we

compute the ASR across three categories of deepfake detectors: Naïve, Spatial, and Frequency-

based. As shown in Table 1, FabSoften+GFPGAN achieves the highest ASR across all

categories, indicating its superior capability in bypassing detection systems. Specifically,

it achieves an average ASR of 74.19%, 75.12%, and 73.09% against Naïve, Spatial, and

Frequency-based detectors, respectively. In contrast, Gaussian smoothing and Bilateral fil-

tering exhibit the lowest ASRs, with Gaussian smoothing averaging only 41.47%, 37.52%,

and 36.65% across the same detector categories. The standalone FabSoften method shows

moderate effectiveness, consistently outperforming classical smoothing but falling short of

GAN-based enhancement. Figure 2 reports AUC (%) for each method across detectors. The

grey bar indicates the baseline AUC for reference. A consistent trend of reduced resilience
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Figure 3: Grad-CAM visualization of detector attention. Ground truth: Deepfake. Green:

Correct detection (classified as fake), Red: Incorrect detection (misclassified as real).

to enhancement methods is observed across all detector categories. These results reflect the

vulnerabilities of each detector type: Naïve detectors rely on low-level artifacts disrupted by

basic enhancements; Spatial detectors focus on pixel irregularities affected by GAN-based

smoothing; Frequency-based detectors detect spectral anomalies, disrupted due to attenua-

tion of high-frequency components in transform domains.

To better understand the internal behavior of the detection models, we analyze Grad-

CAM visualizations in Figure 3 for three representative detectors: Xception, UCF, and

F3Net. The heatmaps show that fake samples incorrectly predicted as real often exhibit ac-

tivation patterns either more similar to genuine samples or deviate from the typical patterns

associated with fake images. This trend is especially pronounced in Xception and F3Net,

where enhancement techniques appear to shift the models’ attention away from fake regions.

This shift suggests that face enhancement effectively suppresses or modifies visual cues that

detectors rely on, thereby misleading the models into incorrect classifications.

4.2 Quality assessment of the face enhancement samples

Generating enhanced deepfake samples through various image processing techniques re-

sults in noticeable alterations to the images, as demonstrated by the quantitative assessment

in Table 2. Techniques like Bilateral Filtering and Gaussian Smoothing strongly preserve

structural and perceptual similarity, with minimal alterations to the original deepfakes. In

contrast, Spectral Smoothing, FabSoften, GFPGAN, and FabSoften+GFPGAN make more

pronounced changes, yielding the lowest perceptual scores.

In Figure 4, the impact of different face enhancement methods on facial features, par-

ticularly the eyebrows and lips, is clearly visible. It is evident that the Gaussian Smoothing

and Bilateral Filtering slightly enhance the facial features while maintaining their structural

integrity. The eyebrows and lips appear slightly refined and natural, aligning with the high

SSIM (0.9942, 0.9864) and low LPIPS (0.0120, 0.0061) values. On the contrary, Figure 6a

illustrate GAN-based enhancements, such as GFPGAN and FabSoften+GFPGAN, that have

drastically altered deepfakes by modifying soft biometric traits such as age, skin texture,

and facial symmetry. These changes improve the visual quality but also disrupt key forensic

cues, causing detectors to misclassify.
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Table 2: Quantitative evaluation of generated attacks using perceptual metrics: SSIM↑,

PSNR↑ (higher is better), and LPIPS↓ (lower is better).

Category

SSIM↑ PSNR↑ LPIPS↓

FF-DF FF-F2F FF-FS FF-NT Avg. DFD CDFv2 FF-DF FF-F2F FF-FS FF-NT Avg. DFD CDFv2 FF-DF FF-F2F FF-FS FF-NT Avg. DFD CDFv2

M1 0.9847 0.9838 0.9836 0.9831 0.9838 0.9841 0.9914 41.65 41.43 41.35 41.56 41.49 41.88 44.34 0.0380 0.0416 0.0442 0.0389 0.0406 0.0452 0.0212

M2 0.9951 0.9949 0.9942 0.9938 0.9945 0.9954 0.9945 47.62 47.29 47.25 47.47 47.40 48.75 47.98 0.0061 0.0063 0.0061 0.0058 0.0061 0.0065 0.0087

M3 0.9355 0.9349 0.9366 0.9395 0.9366 0.9356 0.9454 37.04 36.97 36.90 37.14 37.01 35.99 39.95 0.0924 0.0956 0.1101 0.1095 0.1019 0.1072 0.0550

M4 0.9514 0.9536 0.9576 0.9511 0.9534 0.9536 0.9597 37.24 37.43 37.66 37.14 37.36 37.46 37.88 0.0575 0.0511 0.0594 0.0561 0.0555 0.0591 0.0599

M5 0.8734 0.8749 0.8756 0.8745 0.8746 0.8744 0.8605 33.13 33.19 33.14 33.18 33.16 33.59 33.28 0.1271 0.1215 0.1384 0.1264 0.1283 0.1173 0.1493

M6 0.8656 0.8649 0.8667 0.8666 0.8659 0.8557 0.8654 36.07 36.03 36.08 36.08 36.06 31.37 31.36 0.1172 0.1118 0.1171 0.1149 0.1152 0.1099 0.1008

Figure 4: Qualitative comparison of face enhancement. Bottom: impact on prediction shift

(Fake→Real) and structural preservation (SSIM↑). Best viewed in color and zoomed in.

4.3 Ablation study on parameter settings

This section analyzes different parameter settings and combinations of face enhancement

techniques on deepfake detection task, using the Xception model on the FF++ dataset.

M1: We applied Gaussian smoothing with kernel sizes 3×3 to 9×9 and σ = 1.5. The 7×7

kernel achieved the best trade-off, with ASR = 42.15% while maintaining high similarity

(SSIM = 0.9838). The 9×9 kernel reached the highest ASR (49.26%) but noticeably de-

graded quality (SSIM = 0.9627). The visual impact is shown in Figure 5a.

M2: For Bilateral Filtering, we experimented with different values of diameter (d), sigma

color (σcolor), and sigma space (σspace). As shown in Table 3, the configuration d = 17,

σcolor = 60, σspace = 100 achieved the best balance between detection evasion (ASR =

53.99%) and perceptual similarity (SSIM = 0.9945). Figure 5b shows the visual impact.

M3: We tested spectral smoothing with different cutoff radii (r) as given in Table 3. A

smaller radii caused excessive blurring and higher ASR, while larger values preserved more

detailed but reduced ASR. We selected a radius of 40 as it offered a good balance between

concealment (ASR = 42.55%) and perceptual quality (SSIM = 0.9475). The visual impact

of varying radius is shown in Figure 5c.

M4: We evaluated combinations of αr and αε as given in Table 3. Increasing these param-

eters progressively improved ASR, reaching a maximum of 65.78% when both parameters

were set to 10, but at the cost of lower SSIM (0.9213). The setting αr = 10, αε = 5 provides

a favorable trade-off between ASR (63.12%) and structural similarity (SSIM=0.9534). The

visual impact of varying parameters is shown in Figure 5d.

Combination Strategies: For combination strategies, we evaluated different smoothing

filters paired with GFPGAN to analyze their effectiveness in detection evasion and perceptual

quality. As shown in Table 3, all methods achieved high ASRs, with the highest ASR of

76.25% observed for FabSoften combined with GFPGAN. However, this setting resulted in

a slightly lower SSIM (0.8659), reflecting stronger alterations.
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Table 3: Attack success rates versus perceptual quality across various parameter configura-

tions. Bold marks optimal trade-offs.
Gaussian Smooth Bilateral Filter Spectral Smooth FabSoften Combination

G ASR(%) SSIM σcolor σspace d ASR(%) SSIM r ASR(%) SSIM αr αε ASR(%) SSIM Methods ASR(%) SSIM

3×3 36.175 0.9898 30 50 9 42.15 0.9971 10 61.37 0.7219 1 5 39.73 0.9652 M1 + M5 73.35 0.8790

5×5 36.17 0.9850 60 100 17 44.66 0.9945 20 53.75 0.8840 5 10 56.42 0.9518 M2 + M5 71.82 0.8725

7×7 42.15 0.9838 80 120 16 58.70 0.9447 40 47.22 0.9366 10 5 63.12 0.9534 M3 + M5 74.79 0.8553

9×9 49.26 0.9627 100 150 17 57.25 0.9246 60 35.47 0.9876 10 10 65.78 0.9213 M4 + M5 76.25 0.8659

Figure 5: Qualitative effects of different parameters on the visual output of face enhancement

methods.

4.4 Analysis of adversarial training as counter-defense

Table 4: Xception AUC (%) for adver-

sarial train/test configurations on FF++.

Bold marks best performance.

Train

Test

M2 M4 M6

Pre-trained 57.85 38.41 21.27

M2 89.74 45.22 24.37

M4 69.27 91.85 23.36

M6 68.19 71.38 90.26

We performed adversarial training of the Xception

model on the FF++ dataset using different face

enhancement methods: Bilateral filter (M2), Fab-

Soften (M4) and FabSoften+GFPGAN (M6). As

shown in Table 4, the pre-trained baseline achieves

moderate performance on M2 (57.85%) but strug-

gled with M4 (38.41%) and M6 (21.27%). Fine-

tuning on M2 raised detection of M2 substantially

to 89.74% but generalization to other enhancement

methods remained limited. In contrast, training

with M4 samples achieved 91.85% on M4 and

higher performance on M2 (69.27%). The model

still struggled against M6 achieving only 23.26%

AUC. Finally, training on M6 resulted in more consistent improvements, with 68.19%,

71.38%, and 90.26% across M2, M4 and M6 respectively.

5 Discussion

Dual Role of face enhancement techniques: Our findings underscore the dual nature of

face enhancement techniques; while designed to improve visual quality, they inadvertently

disrupt biometric cues, thereby misleading deepfake detectors. Designed for tasks such as
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(a) (b)

Figure 6: (a) Some severe examples where the GAN-based face enhancement have drasti-

cally changed the initial deepfake. (b) Trade-off between attack effectiveness and structural

similarity across face enhancement methods.

noise removal, detail restoration, and skin smoothing, these methods enhance image real-

ism and perceptual quality. However, the same transformations that improve appearance can

also obscure low-level forensic cues. This suggests the dual-nature of beautification filters in

enhancing appearance and hiding synthetic content makes them anti-forensic tools for deep-

fake defense. As shown in Figure 6b, there exists a consistent trade-off between structural

similarity and evasion effectiveness across all detection methods. Even in the absence of ma-

licious intent, these operations can reduce the effectiveness of forensic models by removing

the very features on which they rely.

Ease of use and generalization: A notable finding of our study is the ease with which

face enhancement techniques can subvert deepfake detection. Unlike adversarial attacks that

depend on model access or iterative optimization, these techniques are model-agnostic and

operate without any knowledge of the target detector. Most tools are publicly available in

consumer apps and editing software, enabling real-world use, especially on social media

where content is often enhanced before sharing. Our experiments show that these methods

generalize across diverse detectors and datasets, underscoring the need to redesign forensic

models for realistic post-processing conditions.

6 Conclusion

This study investigated the dual role of face enhancement techniques as both an anti-forensic

attack against deepfake detectors and a method to enhance visual realism. Extensive ex-

periments on six deepfake detectors across three benchmark datasets revealed a significant

performance degradation. Our evaluation provides a comprehensive analysis of the impact

of image processing and GAN-based face enhancement techniques on deepfake detectors

across three categories: Naïve, Spatial, and Frequency-based approaches. Furthermore, we

evaluated the trade-off between structural similarity and detection evasion, highlighting how

these enhancement techniques improve visual realism while simultaneously bypassing detec-

tion mechanisms. This study highlights that simple yet effective face enhancement methods

can pose new challenges for the forensic models, adding another layer of challenge to the

design of deepfake detectors. While adversarial training has shown promising results, it still

shows limited generalization. These manipulations introduce distributional shifts rather than

adversarial noise, making them more difficult to counter using conventional adversarial de-

fense strategies. In future work, addressing these challenges will enhance the reliability and

robustness of deepfake detectors in adversarial scenarios.
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