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Abstract

Face enhancement techniques are widely used to enhance facial appearance. How-
ever, they can inadvertently distort biometric features, leading to significant decrease in
the accuracy of deepfake detectors. This study hypothesizes that these techniques, while
improving perceptual quality, can degrade the performance of deepfake detectors. To
investigate this, we systematically evaluate whether commonly used face enhancement
methods can serve an anti-forensic role by reducing detection accuracy. We use both tra-
ditional image processing methods and advanced GAN-based enhancements to evaluate
the robustness of deepfake detectors. We provide a comprehensive analysis of the effec-
tiveness of these enhancement techniques, focusing on their impact on Naive, Spatial,
and Frequency-based detection methods. Furthermore, we conduct adversarial training
experiments to assess whether exposure to face enhancement transformations improves
model robustness. Experiments conducted on the FaceForensics++, DeepFakeDetection,
and CelebDF-v2 datasets indicate that even basic enhancement filters can significantly
reduce detection accuracy achieving ASR up to 64.63%. In contrast, GAN-based tech-
niques further exploit these vulnerabilities, achieving ASR up to 75.12%. Our results
demonstrate that face enhancement methods can effectively function as anti-forensic
tools, emphasizing the need for more resilient and adaptive forensic methods.

1 Introduction

Recent advancements in deepfake generation techniques have enabled the creation of syn-
thetic media to the extent that it now appears almost indistinguishable from reality [18].
Although these breakthroughs have played a positive role in entertainment, and other ap-
plications, they also pose significant threats, including misinformation, fraud, and privacy
violations [11]. Researchers around the world have developed various deepfake detection
methods including naive [17, 19], spatial [15, 26], and frequency [13, 16] based methods.
Despite their promising performance, deepfake detectors remain vulnerable to adversarial
attacks that exploit their sensitivity to carefully crafted perturbations. These distortions are
often imperceptible to human eye, but can significantly reduce detection accuracy [22].
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Figure 1: Using face enhancement as anti-forensic in deepfake detectors (left).Naive, Spa-
tial, and Frequency-based detection methods with average attack success rates (ASR™) across
various enhancement methods (right). Best viewed in color and zoomed in.

Unlike the existing studies that explore adversarial attacks specifically designed for deep-
fake detection models, we focus on methods from face enhancement domain such as skin
smoothing, and detail enhancement. These face enhancement techniques, while designed to
improve perceptual quality, can act as anti-forensic attack by concealing artifacts and cues
that deepfake detectors rely upon. This dual role not only challenges the robustness of deep-
fake detection systems but also introduces an additional layer of complexity by misleading
human perception. Figure 1 shows how face enhancement reduces accuracy across various
detectors, raising concerns about their anti-forensic potential and implications for both au-
tomated systems and human judgment. To further explore this dual characteristics of face
enhancement methods, this paper answers the following research questions:

¢ Are face enhancement filters effective as anti-forensic attacks?

* To what extent do face enhancement methods exhibit anti-forensic capabilities against
Naive, Spatial, and Frequency-based deepfake detectors?

* What are the trade-offs between perceptual quality and detection evasion when applying
face enhancement methods?

¢ Can adversarial training mitigate the anti-forensic effects of face enhancement methods?

By investigating these questions, we aim to bridge the gap between forensic frameworks
and real-world scenarios where face-enhancement methods may degrade detection perfor-
mance, providing a deeper understanding of deepfake detection vulnerabilities. Our contri-
butions are summarized below:

* We analyze and demonstrate that face enhancement techniques can effectively deceive
state-of-the-art deepfake detectors.

* We further analyze that applying face enhancement filters not only evades detection but
also enhances the visual realism of deepfake videos by minimizing artifact traces, making
them imperceptible to the human eye.

* We experimentally prove that these enhancement techniques can generalize across diverse
categories of detectors, including Naive, Spatial, and Frequency-based methods, highlight-
ing their anti-forensic impact on detection performance.



SAEED, HAQ, MALIK: REALISM TO DECEPTION 3

2 Literature review

Several studies have explored adversarial attacks within the broader context of computer vi-
sion and neural networks [23]. An early study by Carlini and Wagner [4] highlighted the
vulnerability of neural networks to imperceptible perturbations. Similarly, Li et al. [12] pro-
posed frequency domain regularization for iterative adversarial attacks, crafting impercep-
tible yet highly effective perturbations. Beyond these foundational studies, several studies
focus specifically on adversarial challenges within the domain of deepfake detection [5, 6].
For instance, Hussain et al. [9] propose adversarial perturbations that can bypass DNN-
based Deepfake detectors in both white- and black-box attack scenarios, even under com-
pression, posing a significant real-world threat. Ain et al. [2] demonstrate that visually
natural perturbations, such as perceptual facial moles, can significantly undermine detection
accuracy. Hou et al. [7] propose statistical consistency attack named StatAttack, that min-
imizes the statistical differences between real and fake images using natural degradations
and distribution-aware loss effectively bypassing spatial and frequency-based deepfake de-
tectors. Carlini et al. [3] explored latent-space perturbations within the generative model to
produce adversarial images that evade deepfake detectors. Huang et al. [8] proposed Fake-
Polisher, a learning-based reconstruction method that suppresses GAN synthesis footprints,
significantly degrading state-of-the-art deepfake detectors and revealing their reliance on
low-level artifacts. Ivanovska et al. [10] examined single-image deepfake detector vulnera-
bilities to black-box attacks via Denoising Diffusion Models, showing that even one guided
denoising step can markedly lower detection rates without visible changes. Despite these
advances, most existing studies focus predominantly on mathematical perturbations, such as
noise-based or gradient-guided methods [14]. They often neglect the potential of practical,
real-world techniques like face enhancement filters, which can serve as both perceptual im-
provement tools and detection evading mechanisms. This gap highlights the need for further
research into practical attacks that can effectively bypass deepfake detection systems while
maintaining high perceptual realism.

3 Design of the empirical study

3.1 Datasets and evaluation metrics

We evaluate face enhancement methods against deepfake detectors using FaceForensics++
(c23), DeepFakeDetection (c23), and CelebDF-v2. Every fifth frame of real and fake videos
is sampled for balanced representation, adhering to the standard train-test splits. All six
deepfake detectors are trained under identical settings with a batch size of 32, and early
stopping is employed to mitigate overfitting. Perceptual quality is measured with SSIM,
PSNR, and LPIPS, while detection degradation is reported via attack success rate (ASR),
defined as the proportion of fake samples misclassified as real.

3.2 Face enhancement methods

To conduct this empirical study, we select six face enhancement techniques and apply them
to regenerate the deepfake datasets accordingly. These techniques span classical spatial
smoothing, transform-domain smoothing, and generative restoration approaches.

M1: Gaussian Smoothing [20] is a common face enhancement technique used to reduce im-
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perfections such as blemishes, wrinkles, and uneven textures by applying a weighted average
to surrounding pixels.

M2: Bilateral Filtering [21] is another smoothing technique that reduces the prominence
of uneven skin tones while preserving important edge details on the face. Bilateral filtering
operates by averaging pixel values based on both spatial proximity and intensity similarity.

M3: Spectral Smoothing [1] is a frequency-domain low-pass filtering technique that selec-
tively suppresses high-frequency components. The image is transformed via the Discrete
Fourier Transform (DFT).

M4: FabSoften [24] enhances facial aesthetics by dynamically smoothing skin blemishes,
guided by facial attributes such as blemish density and texture coarseness, and restores nat-
ural skin texture through wavelet-based manipulations.

MS5: GFPGAN [25] is a blind face restoration approach leveraging a Generative Facial Prior
from a pretrained StyleGAN2 model. GFPGAN jointly performs degradation removal and
detail restoration in a single forward pass.

M6: FabSoften + GFPGAN combines wavelet-domain smoothing with generative restora-
tion. First, we apply FabSoften to suppress high-frequency blemishes, followed by GFPGAN
to reconstruct perceptually convincing facial details.

3.3 Deepfake detectors

For this empirical study, we selected six deepfake detection methods, comprising two promi-
nent deepfake detectors of each category—Naive, Spatial, and Frequency-based.

3.3.1 Naive deepfake detectors

These methods generally use CNNs to directly differentiate between deepfake and genuine
media. While computationally efficient, they are vulnerable to reductions in accuracy caused
by subtle modifications and enhancements that exhibit anti-forensic effects.
EfficientNet-B4[19] is one of the widely used CNN in deepfake detection due to its highly
optimized architecture, which balances model depth, width, and resolution for superior per-
formance. Its compound scaling approach allows it to efficiently capture fine-grained spatial
details and subtle manipulations in deepfake images and videos.

Xception [17] is popular in deepfake detection due to its superior feature extraction capabil-
ities. Xception leverages depth-wise separable convolutions to efficiently capture spatial and
channel-wise relationships, making it highly effective in identifying deepfake artifacts.

3.3.2 Spatial deepfake detectors

These detectors leverage deep neural networks to analyze pixel-level information, focusing
on spatial inconsistencies in texture, or lighting making them effective for high-resolution
images.

CORE [15] captures different representations of the same sample via different augmenta-
tions. The framework explicitly enforces representation consistency across different aug-
mented views through a cosine-based Consistency Loss.

UCF [26] employs a multi-task disentanglement framework to tackle two challenges: over-
fitting to irrelevant features and overfitting to method-specific textures. By extracting shared
features, the framework addresses these issues while improving generalization capability.
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Table 1: ASR of face enhancement methods against deepfake detectors. Results are reported
across FaceForensics++ (FF++), DeepfakeDetection (DFD), and Celeb-DFv2 (CDFv2).

Gaussian Blur Bilateral Filter Spectral Smooth FabSoften GFP-GAN FabSoften+GFPGAN
Category  Method ., DED  CDFv2 FF++ DFD CDFv2 FF++ DFD CDFv2 FF++ DED CDFv2 FF++ DFD CDFv2 FF++ DFD CDFv2

EffNetB4 40.78 4285 5136 4791 4897 5817 46.64 39.92 4146 5677 6446 6253 6885 5549 5443 7212 8739  78.60
Xception  42.15  41.88 5268 44.66 44.15 61.37 4722 3489 46.07 63.12 6565 6408 6216 5821 5170 7625 8597 77.29
Core 3899 4444 49.10 4331 5086 53.67 4248 40.17 4137 5583 63.96 61.19 59.12 5473 5646 7695 8033 79.22

Naive

Spadal UCF 3605 43.82 4888 4118 5026 5213 4507 44.14 43.68 59.97 6203 64.63 5596 52.65 5487 7329 80.50 78.97
A  PNet 3671 4257 5002 4391 4981 5587 5630 41.78 4637 6381 6339 6992 6280 5354 5725 7134 8039 80.16
TCQUENCY SpSL 3659 4134 48.66 4805 5555 5092 5896 4881 5187 6545 6535 6838 6417 5597 60.82 74.83 8033 8375
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Figure 2: Deepfake detector AUC across FaceForensics++ (FF++), DeepfakeDetection

(DFD), and Celeb-DFv2 datasets.

3.3.3 Frequency deepfake detectors

Frequency-based methods target manipulations by identifying anomalies in low or high fre-
quency components. They are particularly robust against compressed inputs, but may strug-
gle when modifications involve frequency-domain alterations.

F3Net [16] employs a cross-attention two-stream network to collaboratively learn frequency-
aware features from two branches: FAD and LFS. The FAD module divides the input image
using learnable frequency bands to extract frequency-aware components. The LFS module
captures localized frequency statistics to highlight differences between real and fake faces.
SPSL [13] integrates spatial image features with the phase spectrum to detect up-sampling
artifacts in face forgeries, enhancing transferability and generalization for face forgery de-
tection. This method employs Xception as the backbone architecture.

4 Experimental evaluations

4.1 Deepfake detection performance under face enhancement

To evaluate the effectiveness of face enhancement techniques as anti-forensic attacks, we
compute the ASR across three categories of deepfake detectors: Naive, Spatial, and Frequency-
based. As shown in Table 1, FabSoften+GFPGAN achieves the highest ASR across all
categories, indicating its superior capability in bypassing detection systems. Specifically,
it achieves an average ASR of 74.19%, 75.12%, and 73.09% against Naive, Spatial, and
Frequency-based detectors, respectively. In contrast, Gaussian smoothing and Bilateral fil-
tering exhibit the lowest ASRs, with Gaussian smoothing averaging only 41.47%, 37.52%,
and 36.65% across the same detector categories. The standalone FabSoften method shows
moderate effectiveness, consistently outperforming classical smoothing but falling short of
GAN-based enhancement. Figure 2 reports AUC (%) for each method across detectors. The
grey bar indicates the baseline AUC for reference. A consistent trend of reduced resilience
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Figure 3: Grad-CAM visualization of detector attention. Ground truth: Deepfake. Green:
Correct detection (classified as fake), Red: Incorrect detection (misclassified as real).

to enhancement methods is observed across all detector categories. These results reflect the
vulnerabilities of each detector type: Naive detectors rely on low-level artifacts disrupted by
basic enhancements; Spatial detectors focus on pixel irregularities affected by GAN-based
smoothing; Frequency-based detectors detect spectral anomalies, disrupted due to attenua-
tion of high-frequency components in transform domains.

To better understand the internal behavior of the detection models, we analyze Grad-
CAM visualizations in Figure 3 for three representative detectors: Xception, UCF, and
F3Net. The heatmaps show that fake samples incorrectly predicted as real often exhibit ac-
tivation patterns either more similar to genuine samples or deviate from the typical patterns
associated with fake images. This trend is especially pronounced in Xception and F>Net,
where enhancement techniques appear to shift the models’ attention away from fake regions.
This shift suggests that face enhancement effectively suppresses or modifies visual cues that
detectors rely on, thereby misleading the models into incorrect classifications.

4.2 Quality assessment of the face enhancement samples

Generating enhanced deepfake samples through various image processing techniques re-
sults in noticeable alterations to the images, as demonstrated by the quantitative assessment
in Table 2. Techniques like Bilateral Filtering and Gaussian Smoothing strongly preserve
structural and perceptual similarity, with minimal alterations to the original deepfakes. In
contrast, Spectral Smoothing, FabSoften, GFPGAN, and FabSoften+GFPGAN make more
pronounced changes, yielding the lowest perceptual scores.

In Figure 4, the impact of different face enhancement methods on facial features, par-
ticularly the eyebrows and lips, is clearly visible. It is evident that the Gaussian Smoothing
and Bilateral Filtering slightly enhance the facial features while maintaining their structural
integrity. The eyebrows and lips appear slightly refined and natural, aligning with the high
SSIM (0.9942, 0.9864) and low LPIPS (0.0120, 0.0061) values. On the contrary, Figure 6a
illustrate GAN-based enhancements, such as GFPGAN and FabSoften+GFPGAN, that have
drastically altered deepfakes by modifying soft biometric traits such as age, skin texture,
and facial symmetry. These changes improve the visual quality but also disrupt key forensic
cues, causing detectors to misclassify.
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Table 2: Quantitative evaluation of generated attacks using perceptual metrics: SSIMT,
PSNR' (higher is better), and LPIPS* (lower is better).

sSIM' PSNR' LPIPS!
Category ¥pDF FF-F2F FF-FS FENT  Avg.  DFD CDFv2 FF-DF FF-F2F FE-FS FENT Avg. DFD CDFv2 FE-DF FF-F2F FF-FS FE-NT  Avg DFD  CDFv2

M1 0.9847 09838 09836 09831 09838 09841 09914  41.65 41.43 4135 4156 4149 4188 4434 00380 0.0416 0.0442 0.0389 0.0406 0.0452 0.0212
M2 0.9951  0.9949 09942 0.9938 0.9945 09954 0.9945 47.62 4729 4725 4747 4740 4875 4798  0.0061 0.0063 0.0061 0.0058 0.0061 0.0065 0.0087
M3 0.9355 09349 09366 09395 09366 09356 0.9454 37.04 36.97 36.90 3714 37.01 3599 3995 0.0924 0.0956 0.1101 0.1095 0.1019 0.1072 0.0550
M4 09514 09536 09576 09511 09534 09536 09597 3724 3743 3766 37.14 3736 3746 3788 00575 00511 00594 00561 00555 00591 0.0599
M5 0.8734  0.8749 0.8756 0.8745 0.8746 0.8744 0.8605  33.13 33.19 3314 3318 3316 3359 3328 00271  0.215 0.1384 0.1264  0.1283 0.1173  0.1493
M6 0.8656  0.8649  0.8667 0.8666 0.8659 0.8557 0.8654  36.07 36.03 36.08 3608 36.06 3137 3136 0.1172 0.1118 0.1171 0.1149 0.1152 0.1099  0.1008

Gaussian Smooth Bilateral Filter Spectral Smooth FabSoften GFPGAN FabSoften+GFPGAN

i:‘

b=

y

Pred: Fake Fake Real Real Fake Real

SSIM:  0.9942 0.9864 0.9299 0.9836 0.8714 0.8728

Figure 4: Qualitative comparison of face enhancement. Bottom: impact on prediction shift
(Fake—Real) and structural preservation (SSIM"). Best viewed in color and zoomed in.

4.3 Ablation study on parameter settings

This section analyzes different parameter settings and combinations of face enhancement
techniques on deepfake detection task, using the Xception model on the FF++ dataset.

M1: We applied Gaussian smoothing with kernel sizes 3x3 to 9x9 and ¢ = 1.5. The 7x7
kernel achieved the best trade-off, with ASR = 42.15% while maintaining high similarity
(SSIM = 0.9838). The 9x9 kernel reached the highest ASR (49.26%) but noticeably de-
graded quality (SSIM = 0.9627). The visual impact is shown in Figure 5a.

M2: For Bilateral Filtering, we experimented with different values of diameter (d), sigma
color (Ocolor), and sigma space (Ogpace). As shown in Table 3, the configuration d = 17,
Ocolor = 60, Ogpace = 100 achieved the best balance between detection evasion (ASR =
53.99%) and perceptual similarity (SSIM = 0.9945). Figure 5b shows the visual impact.
M3: We tested spectral smoothing with different cutoff radii (r) as given in Table 3. A
smaller radii caused excessive blurring and higher ASR, while larger values preserved more
detailed but reduced ASR. We selected a radius of 40 as it offered a good balance between
concealment (ASR = 42.55%) and perceptual quality (SSIM = 0.9475). The visual impact
of varying radius is shown in Figure 5c.

M4: We evaluated combinations of ¢, and o as given in Table 3. Increasing these param-
eters progressively improved ASR, reaching a maximum of 65.78% when both parameters
were set to 10, but at the cost of lower SSIM (0.9213). The setting o, = 10, az = 5 provides
a favorable trade-off between ASR (63.12%) and structural similarity (SSIM=0.9534). The
visual impact of varying parameters is shown in Figure 5d.

Combination Strategies: For combination strategies, we evaluated different smoothing
filters paired with GFPGAN to analyze their effectiveness in detection evasion and perceptual
quality. As shown in Table 3, all methods achieved high ASRs, with the highest ASR of
76.25% observed for FabSoften combined with GFPGAN. However, this setting resulted in
a slightly lower SSIM (0.8659), reflecting stronger alterations.
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Table 3: Attack success rates versus perceptual quality across various parameter configura-
tions. Bold marks optimal trade-offs.

Gaussian Smooth Bilateral Filter Spectral Smooth FabSoften Combination
G ASR(%) SSIM | Guwtor Ogpace d ASR(%) SSIM , r ASR(%) SSIM , o, a: ASR(%) SSIM , Methods ASR(%) SSIM

3x3 36175 09898 i 30 50 9 4215 09971 : 10 6137 07219 1 5 39.73  0.9652 i ML +MS5 7335 0.8790
5x5 3617 09850 i 60 100 17 4466 0994520 5375 08840 0 5 10 5642 09518 i M2+ M5 71.82 08725
Tx7 4215 09838 i 80 120 16 5870 09447 i 40 4722 09366 | 10 5 6312  0.9534 i M3 +MS5 7479 0.8553
9x9 4926  0.9627 i 100 150 17 5725 09246 i 60 3547 09876 : 10 10 6578 09213 i MA+M5 7625  0.8659

unaltered 3x3 Sx3 7x7 9x9 unaltered 30,50,9 60,100,17 80,120,17  100,150,17

AN NN N

l"l\"l\"ﬂ e

Vo M o W o W o Wl
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(a) Impact of varying Gaussian filter (G) size. (b) Impact of varying Bilateral parameters (0, Typacer )-
unaltered 10 20 40 60 unaltered 1,5 5,10 10,5 10,10

.llfnll..

e e

(c) Impact of varying cutoff radii (7). (d) Impact of varying FabSoften parameters (s,, 7).

Figure 5: Qualitative effects of different parameters on the visual output of face enhancement
methods.

4.4 Analysis of adversarial training as counter-defense

We performed adversarial training of the Xception

model on the FF++ dataset using different face Table 4: Xception AUC (%) for adver-
enhancement methods: Bilateral filter (M2), Fab- sarial train/test configurations on FF++.
Soften (M4) and FabSoften+GFPGAN (M6). As Bold marks best performance.

shown in Table 4, the pre-trained baseline achieves Test
moderate performance on M2 (57.85%) but strug-

gled with M4 (38.41%) and M6 (21.27%). Fine- _ Train M2 M4 M6
tuning on M2 raised detection of M2 substantially  Pre-trained 57.85 3841 21.27
to 89.74% but generalization to other enhancement M2 89.74 4522 2437
methods remained limited. In contrast, training M4 6927 91.85 23.36
with M4 samples achieved 91.85% on M4 and M6 68.19 71.38 90.26

higher performance on M2 (69.27%). The model
still struggled against M6 achieving only 23.26%
AUC. Finally, training on M6 resulted in more consistent improvements, with 68.19%,
71.38%, and 90.26% across M2, M4 and M6 respectively.

5 Discussion

Dual Role of face enhancement techniques: Our findings underscore the dual nature of
face enhancement techniques; while designed to improve visual quality, they inadvertently
disrupt biometric cues, thereby misleading deepfake detectors. Designed for tasks such as
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Figure 6: (a) Some severe examples where the GAN-based face enhancement have drasti-
cally changed the initial deepfake. (b) Trade-off between attack effectiveness and structural
similarity across face enhancement methods.

noise removal, detail restoration, and skin smoothing, these methods enhance image real-
ism and perceptual quality. However, the same transformations that improve appearance can
also obscure low-level forensic cues. This suggests the dual-nature of beautification filters in
enhancing appearance and hiding synthetic content makes them anti-forensic tools for deep-
fake defense. As shown in Figure 6b, there exists a consistent trade-off between structural
similarity and evasion effectiveness across all detection methods. Even in the absence of ma-
licious intent, these operations can reduce the effectiveness of forensic models by removing
the very features on which they rely.

Ease of use and generalization: A notable finding of our study is the ease with which
face enhancement techniques can subvert deepfake detection. Unlike adversarial attacks that
depend on model access or iterative optimization, these techniques are model-agnostic and
operate without any knowledge of the target detector. Most tools are publicly available in
consumer apps and editing software, enabling real-world use, especially on social media
where content is often enhanced before sharing. Our experiments show that these methods
generalize across diverse detectors and datasets, underscoring the need to redesign forensic
models for realistic post-processing conditions.

6 Conclusion

This study investigated the dual role of face enhancement techniques as both an anti-forensic
attack against deepfake detectors and a method to enhance visual realism. Extensive ex-
periments on six deepfake detectors across three benchmark datasets revealed a significant
performance degradation. Our evaluation provides a comprehensive analysis of the impact
of image processing and GAN-based face enhancement techniques on deepfake detectors
across three categories: Naive, Spatial, and Frequency-based approaches. Furthermore, we
evaluated the trade-off between structural similarity and detection evasion, highlighting how
these enhancement techniques improve visual realism while simultaneously bypassing detec-
tion mechanisms. This study highlights that simple yet effective face enhancement methods
can pose new challenges for the forensic models, adding another layer of challenge to the
design of deepfake detectors. While adversarial training has shown promising results, it still
shows limited generalization. These manipulations introduce distributional shifts rather than
adversarial noise, making them more difficult to counter using conventional adversarial de-
fense strategies. In future work, addressing these challenges will enhance the reliability and
robustness of deepfake detectors in adversarial scenarios.
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