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Abstract

Face recognition (FR) systems are often prone to demographic biases, partially due
to the entanglement of demographic-specific information with identity-relevant features
in facial embeddings. This bias is extremely critical in large multicultural cities, es-
pecially where biometrics play a major role in smart city infrastructure. The entangle-
ment can cause demographic attributes to overshadow identity cues in the embedding
space, resulting in disparities in verification performance across different demographic
groups. To address this issue, we propose a novel strategy, Unified Text-Image Embed-
ding (UTIE), which aims to induce demographic ambiguity in face embeddings by en-
riching them with information related to other demographic groups. This encourages face
embeddings to emphasize identity-relevant features and thus promotes fairer verification
performance across groups. UTIE leverages the zero-shot capabilities and cross-modal
semantic alignment of Vision-Language Models (VLMs). Given that VLMs are natu-
rally trained to align visual and textual representations, we enrich the facial embeddings
of each demographic group with text-derived demographic features extracted from other
demographic groups. This encourages a more neutral representation in terms of demo-
graphic attributes. We evaluate UTIE using three VLMs, CLIP, OpenCLIP, and SigLIP,
on two widely used benchmarks, RFW and BFW, designed to assess bias in FR. Exper-
imental results show that UTIE consistently reduces bias metrics while maintaining, or
even improving in several cases, the face verification accuracy.

1 Introduction
Face recognition (FR) systems are increasingly integrated into real-world applications [16,
17, 33], yet concerns around demographic bias remain a barrier to their fair and reliable de-
ployment [9, 14, 23, 24]. Such biases manifest as disparities in recognition accuracy across
demographic groups, including race, gender, and age [1, 3, 16, 19, 26]. Addressing these dis-
parities is essential to ensure equitable FR performance, motivating the development of meth-
ods [2, 28, 30, 32, 35] to mitigate bias while maintaining high recognition accuracy. Despite
progress in developing bias mitigation techniques, effectively reducing disparities across de-
mographic groups in verification scenarios remains challenging. This challenge arises partly
because embeddings used for face verification may encode demographic-specific attributes
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(a) Baseline (IE), with the template defined as I (b) UTIE, with the template defined as I′

Figure 1: Comparison of our UTIE average cosine similarities with racial text embeddings
against the baseline (IE) on the RFW subsets, using CLIP ViT/B-16. For each subset, we
compute the average cosine similarities of the face embeddings with the different text em-
beddings Ti, for i ∈ 1, ..,4, representing the four considered races: African (blue), Asian
(green), Caucasian (yellow), and Indian (red). (a) IE displays a high similarity with the cor-
responding demographic class Tî for all subsets while maintaining lower similarities with the
other classes Ti for i ∈ 1, ..,4, i ̸= î. This shows that face embeddings encode demographic-
specific information. (b) For UTIE, the similarity to Tî is significantly lower compared to IE,
and the similarities are spread more evenly across the other classes. This indicates that UTIE
makes the racial information in the embeddings more ambiguous, reducing the alignment
with a single demographic and distributing similarity more evenly across classes.

that contribute to biased performance across groups [8, 11]. In this work, we address this
issue, focusing on disparities in verification performance across demographic groups.

Since verification relies on comparing embeddings extracted from face images, we hy-
pothesize that one contributing factor to this bias is the presence of demographic-specific
information in these embeddings. To mitigate this, we propose a novel approach that encour-
ages face embeddings to be more demographically ambiguous by enriching them with fea-
tures representative of all demographic groups. This strategy aims to make the learned rep-
resentations more generalizable and less sensitive to demographic attributes, thereby reduc-
ing bias in face verification performance. To achieve this, we leverage multimodal Vision-
Language Models (VLMs) and the fact that they produce aligned embeddings for image and
text. We use the text encoder to obtain embeddings that capture demographic characteristics.
Next, we exclude the embedding corresponding to the predicted characteristic (e.g., racial,
gender), i.e, the textual embedding that matches the image embedding with the highest sim-
ilarity score. We then compute the average of the remaining embeddings and add this mean
vector to the original image embedding. By incorporating features representative of other de-
mographic groups into the final visual feature representation, we aim to make the influence
of demographic characteristics more ambiguous within the face embedding. The evaluations
include demographic bias analysis on the Racial Faces in the Wild (RFW) [34] and Balanced
Faces In the Wild (BFW) [25] datasets, reporting verification accuracies along with bias as-
sessment metrics, including the Skewed Error Ratio (SER) and standard deviation (STD).
Both datasets evaluate racial bias, and BFW additionally includes gender bias evaluation.
Furthermore, we evaluate the demographic prediction performance in a zero-shot setting on
the same datasets since our approach relies on accurate and consistent demographic attribute
predictions from the text encoder to construct the enriched face embeddings. We consid-
ered three VLMs, namely CLIP [22], OpenCLIP [5], and SigLIP [40], and our results reveal
that our unified text-image embedding (UTIE) successfully reduces the STD and SER while
improving or maintaining comparable mean accuracy across all models on both racial and
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gender bias evaluation. For instance, in the racial bias evaluation, baseline CLIP achieves a
mean accuracy of 72.20% on RFW, which increases to 72.25% using UTIE, while the STD
decreases using our UTIE from 4.81 to 4.46 and the SER from 1.50 to 1.45. Similarly, in the
gender bias evaluation on BFW, using UTIE with CLIP reduces the STD from 2.72 to 2.58
and lowers the SER from 1.28 to 1.27, while maintaining comparable accuracy. These results
confirm that UTIE enhances demographic ambiguity in the embeddings, leading to reduced
bias while preserving or improving recognition performance. These findings contribute to
ongoing research on bias mitigation in FR and support the development of demographically
ambiguous face embeddings as a viable strategy for reducing bias.

2 Related Work
Demographic bias in FR has received significant attention. Several works [1, 18, 19] ex-
amined the causes of demographic bias, identifying imbalanced or unrepresentative datasets
as a factor. Albiero et al. [1] identified the under-representation of females in training data
as a key factor contributing to gender bias. Another study [18] showed that training FR
systems on balanced datasets is critical for reducing vulnerabilities on specific demographic
groups. Another factor is the variability in skin tone [3, 21]. Buolamwini and Gebru [3]
evaluated three gender classification systems and identified under-performance in recogniz-
ing dark-skinned females. A quantitative assessment across six skin tone groups found light-
skinned individuals easiest to verify and darker-skinned individuals the most challenging
[21]. Other factors, like the impact of image attributes associated with socially constructed
gender norms, have also been investigated. Prior works [7, 12, 31] explored the impact of
makeup on FR accuracy, finding that variations in makeup between images make it more
challenging to recognize genuine pairs. Other studies [36, 37] examined facial hair, showing
that similar beard areas increase similarity scores, while differences reduce them.

All these papers motivated research into how to mitigate bias by modifying the training
strategy or the network structure. To promote fairness in FR, [32] proposes a reinforcement
learning-based Race Balance Network (RL-RBN) that uses adaptive margins to balance FR
performance across races. By modeling margin selection for non-Caucasians as a Markov
decision process and applying deep Q-learning, RL-RBN reduces feature distribution skew-
ness. Alvi et al. [2] propose an algorithm that removes multiple sources of variation from the
feature representation of a network to reduce bias and improve classification accuracy. They
introduce a supervised learning approach that learns features informative for the primary task
while remaining uninformative for spurious variations such as pose or gender, thereby reduc-
ing bias in the learned embeddings. Dhar et al. [8] proposed Protected Attribute Suppression
System (PASS), an adversarial debiasing approach to train a model to classify identities
while discouraging it from predicting protected attributes. It can be trained on descriptors
from any trained high-performing network to classify identities while reducing the encoding
of sensitive attributes, effectively mitigating gender and skin tone bias. Another work [35]
proposed a meta-learning algorithm, Meta Balanced Network (MBN), to mitigate algorith-
mic bias, which learns adaptive margins in large margin loss. MBN balances the feature
scatter among skin tone groups in feature space rather than merely adjusting loss weights.

None of the previous works addressed mitigating bias in VLMs, especially those that
are not fine-tuned to the task, which we address in this work. Additionally, and most im-
portantly, this paper is the first to theorize reducing demographic bias in FR by making the
face embeddings more demographically ambiguous, and doing that by inducing embeddings
encoded from text to the face image embedding. Unlike prior works that encourage balance
during training [32, 35], discourage the encoding of demographic attributes in the feature
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Figure 2: Demographically ambiguous embedding generation with UTIE for racial bias mit-
igation. (a) We use a text encoder ft(·) to extract racial embeddings Ti, for i ∈ 1, ..,4 for
zero-shot prediction. We then exclude the predicted embedding Tî (in this case T1), compute
the average of the remaining demographic embeddings, denoted as T̄ , and add it to the orig-
inal image embedding I resulting to I′. (b) The yellow vector represents the baseline IE. The
blue vector represents our UTIE. This vector is closer to the unbiased axes, as it is more de-
mographically ambiguous, as demonstrated in Section 3.2. Finally, the red vector represents
IE+PTE defined in Section 4. This vector shows stronger demographic dominance, in this
case leaning more toward African identity, illustrating increased demographic influence.

representation [2, 8], or manipulate the comparison and decision-making processes [29, 30],
our approach enriches each face embedding with information derived from embeddings that
explicitly capture characteristics of other demographic groups. This balances the influence
of demographic attributes and reduces their dominance within the embeddings, resulting in a
more demographically ambiguous face representation and thus reducing demographic bias.

3 Methodology
This section introduces our approach to reducing demographic bias in VLM-based FR by
making face embeddings more demographically ambiguous. We first present baseline VLMs,
which learn to align images and text embeddings, allowing us to leverage complementary se-
mantic information from text. We then introduce UTIE, showing how we fuse image and text
embeddings to obscure demographic information, aiming at reducing demographic bias.

3.1 Baseline VLMs (preliminary)
In this paper, we considered three VLMs, namely CLIP [22], OpenCLIP [5], and SigLIP
[40]. Some of which have been shown to be usable as template extractors for FR [6]. These
methods are based on contrastive learning, which aligns related image-text pairs by mini-
mizing the distance between their visual and textual embeddings in a shared space, while
maximizing the distance between embeddings of unrelated pairs [5, 15, 20, 22]. Given a
batch of N (image, text) pairs, the model is trained to identify which of the N ×N possible
pairings correspond to the true pairs. To achieve this, they jointly train an image encoder
fi(·) and a text encoder ft(·) to align the image and text embeddings for N matching (pos-
itive) image-text pairs while making sure that unrelated N2 −N (negative) image-text pairs
are dissimilar in the embedding space. This is done by maximizing the cosine similarity of
the image and text embeddings of the matching pairs in the batch while minimizing the co-
sine similarity of the embeddings of the incorrect pairings. SigLIP is trained using a sigmoid
loss instead of the softmax-based contrastive loss. It operates solely on individual image-
text pairs and does not require a global view of pairwise similarities for normalization. This
allows for scaling to larger batch sizes and improves performance at smaller batch sizes.
The nature of these pre-trained VLMs allows the extraction of embeddings from face images

Citation
Citation
{Alvi, Zisserman, and Nell{å}ker} 2018

Citation
Citation
{Dhar, Gleason, Roy, Castillo, and Chellappa} 2021

Citation
Citation
{Terh{ö}rst, Kolf, Damer, Kirchbuchner, and Kuijper} 2020{}

Citation
Citation
{Terh{ö}rst, Tran, Damer, Kirchbuchner, and Kuijper} 2020{}

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, Krueger, and Sutskever} 2021

Citation
Citation
{Cherti, Beaumont, Wightman, Wortsman, Ilharco, Gordon, Schuhmann, Schmidt, and Jitsev} 2023

Citation
Citation
{Zhai, Mustafa, Kolesnikov, and Beyer} 2023

Citation
Citation
{Chettaoui, Damer, and Boutros} 2025

Citation
Citation
{Cherti, Beaumont, Wightman, Wortsman, Ilharco, Gordon, Schuhmann, Schmidt, and Jitsev} 2023

Citation
Citation
{Jia, Yang, Xia, Chen, Parekh, Pham, Le, Sung, Li, and Duerig} 2021

Citation
Citation
{Li, Li, Xiong, and Hoi} 2022

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, Krueger, and Sutskever} 2021



TAHAR CHETTAOUI, NASER DAMER, FADI BOUTROS: MITIGATING BIAS WITH WORDS 5

that can be used for face verification [40]. They also enable generating embeddings from
text that are aligned with those of the face images. This alignment between text and image
embeddings forms the basis of our UTIE solution, as described in the next Section 3.2.

3.2 Unified Text-Image Embedding (UTIE)
This section presents our UTIE, which combines image and text embeddings to obscure
demographic-specific information and reduce demographic bias. Since face verification
compares embeddings that may encode demographic cues, we propose an approach that en-
courages face embeddings to be more demographically ambiguous by enriching them with
features representative Ti of all N demographic groups. Specifically, we enrich each face em-
bedding with information derived from embeddings that are explicitly designed to capture
characteristics of other (not dominant in this face) demographic groups. To achieve this, we
leverage VLMs, which align image and text embeddings in the same space, allowing us to
enrich face embeddings with demographic features, as detailed in Section 3.1.

As depicted in Figure 2.a, given a sample face image x, we pass it through the image
encoder to obtain its image embedding I. Next, we aim to generate features that are repre-
sentative of all demographic groups. To achieve this, we build on the alignment within the
image-text embedding space and propose leveraging the text encoder to generate these rep-
resentative features. Following the zero-shot settings described in Section 4, we extract text
embeddings, denoted as Ti, for the N class labels corresponding to different demographic
characteristics. Since the prompt specifies only the demographic classes, the text embed-
dings Ti, for i ∈ 1, ..,N, capture information that is ideally exclusively related to those de-
mographics. We then use these embeddings for zero-shot prediction, where we compute the
predicted demographic class as the one with the maximum cosine similarity to I:

î = argmax
i

⟨I,Ti⟩
∥I∥ · ∥Ti∥

, (1)

As a result, we obtain the index î, corresponding to the predicted demographic class. This
index indicates the demographic group that the model predicts for I based on the maximum
alignment in the embedding space. To encourage demographic ambiguity, we aim to shift
the image embedding away from this dominant demographic group. To do that, we need to
enrich the face image embedding with information about the other classes by constructing
the mean text embedding across all demographic groups, excluding the predicted one:

T̄ =
1

N −1 ∑
i̸=î

Ti, (2)

where N is the number of demographic classes. We then add T̄ to the image embedding
to obtain the final demographically ambiguous representation using our UTIE:

I′ = I + T̄ . (3)
In our UTIE solution, we propose to use this adjusted embedding I′ as the face template

for verification instead of the original embedding I. By adding the mean embedding T̄
to the image embedding I, this operation aims to reduce the dominance of the predicted
demographic class Tî. As a result, I′ distributes more evenly across the directions associated
with all demographic groups. This makes the resulting feature vector I′ less aligned with any
single demographic group and more balanced across all groups, making it demographically
ambiguous and helping to reduce demographic bias in downstream tasks.

Figure 1 compares the cosine similarity distributions of image embeddings with racial
text embeddings across the four demographic classes on the RFW [34], introduced in the next
section, subsets for both the baseline (IE) and our proposed approach (UTIE). For all subsets,
IE displays a high similarity with the corresponding demographic class Tî while maintaining
notably lower similarities with the other classes Ti for i ∈ 1, ..,N, i ̸= î. On the other hand,

Citation
Citation
{Zhai, Mustafa, Kolesnikov, and Beyer} 2023

Citation
Citation
{Wang, Deng, Hu, Tao, and Huang} 2019



6 TAHAR CHETTAOUI, NASER DAMER, FADI BOUTROS: MITIGATING BIAS WITH WORDS

for our approach (UTIE), the similarity to Tî is significantly lower compared to IE, and the
similarities spread more evenly across other classes. This indicates that our method makes
the racial information in the embeddings more ambiguous, reducing the strong alignment
with a single demographic and distributing similarity more evenly across classes.

4 Experimental Setup
Face Template Setups. To validate our approach, we consider three feature representations.
The first configuration uses the unmodified image embedding (IE) as a baseline, with the
template defined as I in Section 3.2. The second configuration applies our proposed UTIE
approach, with the template defined as I′ in Section 3.2. This aims to mitigate bias, making
demographic influences more ambiguous in the representation. As a third configuration, to
demonstrate that performing the counter concept to UTIE increases bias, we introduce the
IE+PTE setup, where PTE stands for Predicted demographic Text Embedding. In this setup,
instead of aiming at reducing demographic information, we attempt to reinforce it by adding
the predicted demographic text embedding Tî to the image embedding I, resulting in:

I∗ = I +Tî. (4)
This configuration allows us to examine whether explicitly incorporating the predicted

demographic attribute amplifies demographic bias in the embeddings, providing a contrast-
ing perspective that highlights the effectiveness of our UTIE approach in reducing bias.

Evaluation Datasets. We evaluate the considered VLMs on the RFW [34] and BFW [25]
datasets to assess model bias and performance across demographic groups, as they are widely
used for fairness and bias evaluation [6, 35]. The RFW dataset contains four testing subsets
corresponding to African, Asian, Caucasian, and Indian groups. The BFW dataset extends
this evaluation by providing eight subgroups balanced across gender and race, enabling a
more detailed assessment of intersectional bias. For racial bias evaluation, both RFW and
BFW are suitable, while gender bias is assessed only with BFW.

Zero-Shot Settings. Following the evaluation benchmarks [25, 34] for racial bias eval-
uation, we consider four ethnicities as classes: African, Asian, Caucasian, and Indian. CLIP
[22], OpenCLIP [5], and SigLIP [40] were trained using sentence-based prompts rather than
single-word labels. This motivates using prompts during zero-shot evaluation, such as "A
photo of a {label}.", to help bridge the distribution gap between pre-training and
downstream tasks, which has been shown to improve accuracy. Additionally, it was observed
that zero-shot performance can be significantly enhanced by customizing the prompt text
for each task [22]. For these reasons, we adopt the prompt "A photo of a {label}
person." as our standard prompt in this work. Following the same setup, we evaluate
gender bias in Section 5.2 using two classes, female and male, instead of four ethnic groups.

Evaluation Metrics. We follow the reporting protocols and evaluation metrics asso-
ciated with the evaluation datasets and recent works [6, 34, 35]. We report the results as
verification accuracies in (%) on each subset and as average accuracies to evaluate gen-
eral recognition performance on the benchmarks. To evaluate the bias, we report the STD
between all subsets and the SER, which is given by maxgErrorg

mingErrorg
, where g represents the de-

mographic group, as reported in [32, 35]. A higher STD value indicates more bias across
demographic groups and vice versa. For SER, models with values closer to 1 are less biased.

Model Architectures. We use official pre-trained models for all three VLMs: CLIP
(ViT-B/16) [22], OpenCLIP (ViT-B/16) [5], and SigLIP (ViT-B/16) [40]. The OpenCLIP
model was trained on the LAION-2B dataset [27], which includes a 2.32 billion-sample
English image-text subset. For comparison, CLIP [22] was trained on a smaller dataset of
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400 million (image, text) pairs sourced from large-scale publicly available data. For SigLIP,
we use the ViT-B/16 model trained on the WebLI dataset [4] at a resolution of 224×224.

5 Results
This section presents the results achieved by our UTIE solution on the considered VLMs on
RFW and BFW. We evaluate three feature representation strategies, IE, UTIE, and IE+PTE,
presented in Section 4. We assess these configurations for racial bias in Section 5.1 and
gender bias in Section 5.2, examining their impact on fairness in verification performance.

5.1 Racial Bias in FR Evaluation
We evaluated the considered approaches, namely CLIP [22], OpenCLIP [5], and SigLIP
[40], on the RFW [34] and BFW [25] benchmarks to assess model bias and performance
across different demographic groups. To evaluate our proposed UTIE, we compare it with
the baseline (IE) and a validation setup (IE+PTE) where we add the predicted demographic
embedding to amplify bias signals. This setup allows us to systematically evaluate the impact
of each feature representation on racial bias. One can observe the following from the results
in Table 5.1, highlighting the impact of different feature representations on racial bias:

Comparison of UTIE vs. IE: UTIE reduces STD and SER across all settings on both
datasets, while improving mean accuracy on RFW [34] and maintaining comparable accu-
racy on BFW [25]. For instance, CLIP [22] achieves a mean accuracy of 72.20% on RFW
with IE and 72.25% with UTIE, while reducing STD from 4.81 to 4.46 and SER from 1.50
to 1.45. On BFW, CLIP with UTIE maintains a high mean accuracy (84.23% vs. 84.50%)
while reducing STD (1.54 vs. 1.63) and SER (1.26 vs. 1.29). This trend holds for Open-
CLIP [5] and SigLIP [40], demonstrating that UTIE, by making face embeddings more de-
mographically ambiguous as shown in Figure 1, can preserve performance and reduce bias.
In contrast, the IE+PTE setup yields higher STD and SER, confirming that adding predicted
demographic embeddings amplifies demographic bias as intended for validation.

Comparison across models: CLIP [22] and OpenCLIP [5] consistently achieve higher
average accuracy across both RFW [34] and BFW [25] compared to SigLIP [40], with BFW
means around 84% for both CLIP and OpenCLIP, while SigLIP reaches around 79%. SigLIP
exhibits lower STD and SER on BFW, reaching an STD of 0.97 with UTIE compared to
1.54 and 2.13 for CLIP and OpenCLIP, respectively, indicating stronger consistency across
demographic groups despite its lower overall accuracy. Compared to OpenCLIP, CLIP is
more balanced across demographic groups, exhibiting lower STD and SER in all cases.

Comparison of Dataset influence on accuracy and bias: Across all models, the aver-
age accuracy is consistently higher on BFW [25] than on RFW [34], consistent with previous
works [10, 13, 38]. For example, baseline CLIP [22] achieves an average accuracy of 84.50%
on BFW compared to 72.20% on RFW. Additionally, both the STD and SER are lower on
BFW across all models, indicating reduced demographic variance compared to RFW.

Overall, our UTIE consistently reduced the bias of the investigated model over racial
groups, while having minimal effect on the FR performance. This, along with the clear neg-
ative effect of the counter concept, IE+PTE, validates our approach of reducing demographic
bias by making the demographic information in the embedding more ambiguous.

5.2 Gender Bias Evaluation
Besides racial bias, we assess gender bias using the BFW dataset [25]. We follow the same
evaluation settings used for the racial bias assessment and examine the same approaches,
focusing on their performance across the two gender groups. From Table 5.2, highlighting
the impact of different feature representations on gender bias, the following can be noted:
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Approach Feature Embedding RFW[34] BFW[25]
African Asian Caucasian Indian Mean STD SER Asian Black Indian White Mean STD SER

CLIP[22]
IE 70.75 69.73 79.32 68.98 72.20 4.81 1.50 82.36 84.49 84.85 86.31 84.50 1.63 1.29

UTIE 70.85 69.80 78.88 69.48 72.25 4.46 1.45 82.20 84.16 84.68 85.89 84.23 1.54 1.26
IE+PTE 68.47 68.73 77.90 66.87 70.49 5.01 1.50 82.22 83.37 83.96 86.25 83.95 1.70 1.29

OpenCLIP[5]
IE 69.37 68.60 79.95 69.72 71.91 5.38 1.57 80.49 86.01 83.97 86.35 84.20 2.69 1.43

UTIE 69.35 68.83 79.80 69.85 71.96 5.24 1.54 80.54 85.23 83.79 84.85 83.60 2.13 1.32
IE+PTE 67.83 67.62 78.93 65.58 69.99 6.05 1.63 80.07 84.85 82.63 86.37 83.48 2.74 1.46

SigLIP[40]
IE 58.17 64.17 71.62 65.98 64.98 5.54 1.47 78.27 79.52 80.57 80.54 79.73 1.09 1.12

UTIE 58.63 64.62 71.63 65.60 65.12 5.32 1.46 77.83 78.91 79.93 79.80 79.12 0.97 1.10
IE+PTE 56.80 61.02 69.86 63.53 62.80 5.46 1.43 77.77 79.17 79.93 80.88 79.44 1.31 1.16

Table 1: Evaluation results of different feature representations for the considered models on
RFW [34] and BFW [25] reported as average verification accuracy in (%), STD, and SER
across four different demographic groups. The higher mean indicates better verification
accuracy, and the higher STD indicates a more biased model. For SER, the model that
achieved a value closer to 1 is less biased. UTIE consistently reduces STD and SER across
all settings on both datasets, while maintaining comparable accuracy on RFW and BFW.

Comparison of UTIE vs. IE: For all models, UTIE shows only a slight decrease in
average recognition performance compared to baseline IE. Additionally, UTIE consistently
reduces both STD and SER across the two gender groups on BFW, demonstrating that in-
creasing demographic ambiguity in embeddings can effectively reduce gender bias. For
example, with UTIE, OpenCLIP [5] improves, with STD dropping from 3.86 to 3.06 and
SER from 1.42 to 1.30. CLIP [22] STD decreases from 2.72 to 2.58, with a slight reduction
in SER from 1.28 to 1.27. SigLIP [40] maintains a stable STD while showing a small SER
improvement. The IE+PTE configuration consistently demonstrates lower accuracy as well
as higher STD and SER, confirming that incorporating predicted demographic text embed-
dings amplifies demographic influence and bias in representations, as expected for validation.
These observations follow the trend observed in the racial bias evaluation in Section 5.1.

Comparison across models: CLIP [22] generally achieves the highest mean accuracy,
followed by OpenCLIP [5], with SigLIP [40] showing lower performance. OpenCLIP re-
ports a higher STD of 3.06 and SER of 1.30 than CLIP, which achieves an STD of 2.58
and SER of 1.27, indicating that OpenCLIP is slightly more biased across genders, although
UTIE helps reduce this gap. SigLIP consistently yields lower mean accuracy but demon-
strates the lowest STD of 1.59 and SER of 1.11, reflecting lower gender bias.

Our UTIE reduces gender bias in the evaluated model without significantly impacting
FR accuracy, similar to the trend observed in the racial bias evaluation in Section 5.1.

Approach Feature Embedding Female Male Mean STD SER

CLIP[22]
IE 82.58 86.43 84.50 2.72 1.28

UTIE 82.58 86.23 84.41 2.58 1.27
IE+PTE 82.65 86.58 84.61 2.78 1.29

OpenCLIP[5]
IE 81.48 86.93 84.20 3.86 1.42

UTIE 81.44 85.76 83.60 3.06 1.30
IE+PTE 81.25 86.74 83.99 3.88 1.41

SigLIP[40]
IE 78.60 80.85 79.73 1.59 1.12

UTIE 78.13 80.38 79.25 1.59 1.11
IE+PTE 78.29 80.76 79.52 1.75 1.13

Table 2: Evaluation results of the different feature representations for the considered models
on BFW [25] reported as average verification accuracy in (%), STD, and SER across the two
gender groups. The UTIE consistently reduces STD and SER across all settings.

5.3 Zero-shot text encoder performance:
Our approach relies on consistent demographic attribute predictions from the text encoder to
construct the enriched face embeddings. This is based on the need to determine the demo-
graphic group î for the image embedding I, as used in Equation 1. Therefore, following the
zero-shot settings detailed in Section 4, we evaluate the zero-shot prediction accuracy of the
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text encoder for both race and gender. From Table 5.3, which presents the zero-shot accuracy
of the text encoder for racial and gender prediction, we draw the following observations:

Analysis of zero-shot text encoder performance in recognizing racial groups: All
models achieve high mean accuracy across groups, with CLIP [22] and OpenCLIP [5] reach-
ing around 92-93% on RFW [34] and 87.92% and 91.44%, respectively, on BFW [25]. In
comparison, SigLIP [40] shows a lower mean accuracy, scoring 88.07% on RFW and 86.15%
on BFW, reflecting its overall lower zero-shot text encoder performance.

Analysis of zero-shot text encoder performance in recognizing gender groups: All
models achieve high mean accuracy across gender groups, with CLIP [22] and OpenCLIP
[5] reaching 98.42% and 97.42% on BFW, respectively, while SigLIP [40] shows lower
performance at 95.11%, highlighting its generally lower zero-shot text encoder accuracy.

Approach Architecture RFW[34] BFW[25]
African Asian Caucasian Indian Mean Asian Black Indian White Mean Female Male Mean

CLIP[22] ViT-B/16 87.72 96.34 97.31 89.74 92.78 98.80 64.00 90.84 98.04 87.92 97.86 98.98 98.42
OpenCLIP[5] ViT-B/16 95.99 93.74 97.44 84.57 92.94 95.16 85.40 85.88 99.32 91.44 96.78 98.06 97.42
SigLIP[40] ViT-B/16 92.68 82.08 96.77 80.75 88.07 83.68 79.20 82.82 98.90 86.15 92.68 97.54 95.11

Table 3: Zero-shot racial prediction accuracy on RFW [34] and BFW [25], and gender pre-
diction accuracy on BFW, for the considered models, reported as average prediction accuracy
(%). OpenCLIP [5] achieves the highest mean zero-shot accuracy for racial prediction on
RFW and BFW, followed by CLIP [22], while SigLIP [40] shows the lowest mean accuracy.
For gender prediction on BFW, CLIP achieves the highest mean zero-shot accuracy.

Even though performing this recognition is neither our contribution nor our goal, to put
the reported results in a wider perspective, the performance compares well to recent works
on the same benchmarks, with [39] reporting 93.66% average face verification accuracy.

6 Conclusion
We proposed a novel approach to reduce demographic bias in VLM-based FR by inducing
demographic ambiguity in face embeddings. We employed VLMs to create a UTIE that in-
corporates features from multiple demographic groups to introduce demographic ambiguity,
thereby reducing the dominance of any single demographic attribute in the face representa-
tion while preserving identity information. We experimentally demonstrated this ambiguity
by showing a more evenly distributed demographic similarity distribution on demographic
groups after applying our approach, compared to the baseline. Our approach was evaluated
on RFW and BFW, using three SOTA models: CLIP, OpenCLIP, and SigLIP. Our results
consistently demonstrate a reduction in bias metrics while maintaining verification accuracy.
For example, when comparing the baseline with UTIE, we observe that UTIE reduces the
STD from 4.81 to 4.46 and the SER from 1.50 to 1.45 on RFW with CLIP while improving
the mean accuracy from 72.20% to 72.25%. On BFW, CLIP with UTIE maintains a com-
parable mean accuracy while reducing the STD from 1.63 to 1.54 and the SER from 1.29 to
1.26. This trend holds across OpenCLIP and SigLIP. These findings validate that increas-
ing demographic ambiguity in face embeddings is a promising direction for reducing bias
in FR systems and motivate further research on improving this strategy, including prompt
engineering, ensembling methods, and investigating its potential impact on privacy leakage.
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