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Abstract

Automatic speaker verification is increasingly deployed in security applications, in-
cluding remote identity verification, internet banking, and access control systems. Al-
though these systems have achieved strong performance under clean conditions, they
remain vulnerable to logical access attacks, where synthetic speech is injected directly
into the system to impersonate a legitimate user. This paper investigates the effectiveness
of such attacks under a black-box threat model using a reproducible pipeline based on
retrieval-based voice conversion. We evaluate spoofing success across multiple datasets,
analyzing how pitch manipulation and gender pairing affect viability. A focused eval-
uation on command-based speech is performed using a new dataset of short utterances
collected under controlled conditions. To complement biometric performance, we assess
the intelligibility of cloned commands through automatic speech recognition, providing
further insight into the risks posed by realistic voice cloning.

1 Introduction
Voice-based authentication is increasingly adopted in a wide range of security-critical ap-
plications, including smart assistants, home automation, and hands-free access control. In
these scenarios, users typically interact with the system through short spoken commands,
relying on automatic speaker verification (ASV) to authenticate their identity in a seamless
and natural way [17]. While ASV systems have improved significantly in recent years, they
remain vulnerable to spoofing attacks based on synthetic speech [6, 7]. These attacks are
typically categorized into two types [23]: presentation attacks (PA), in which malicious in-
puts are physically presented to the sensor (e.g., via loudspeaker replay), and logical access
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attacks (LA), where synthetic or manipulated speech is injected directly into the system
in digital form. This work focuses on the latter, which bypasses the sensor entirely and
targets the system at the feature or signal level. Synthetic speech can be generated via text-
to-speech (TTS) or voice conversion (VC). TTS maps text to speech, while VC adapts a
source utterance to the vocal traits of a target speaker. In particular, Retrieval-based VC
(RVC) enables high-fidelity mimicry with little data and no system access [27], heightening
risks in command-driven scenarios where utterance content is predictable. Although ASV
vulnerabilities have been studied under diverse models and conditions [10, 25], little work
examines short fixed-phrase commands, intelligibility constraints, and composite ASV+ASR
pipelines. We address this gap with a targeted evaluation of spoofing effectiveness, focusing
on the interaction between voice similarity and command recognition. We present a repro-
ducible black-box pipeline based on RVC, and perform a structured multi-dataset evaluation
across two ASV systems. Additionally, we introduce the Voice Command Identity Dataset
(VocID)1, a command-oriented speech corpus acquired under controlled conditions, and use
it to assess both biometric vulnerability and intelligibility under deepfake attacks. Our con-
tributions are summarized as follows: (1) we replicate and contextualize the vulnerability of
ASV systems under a realistic logical access threat model, focusing on short command-based
utterances; (2) we analyze how pitch manipulation and base-target speaker gender pairing in-
fluence spoofing success across two ASV systems and three datasets; we assess the impact
of intelligibility constraints by integrating an ASR component, and evaluate joint ASV+ASR
acceptance rates to simulate realistic usage scenarios; we release the VocID dataset to support
further research on command-level spoofing evaluation and intelligibility-aware authentica-
tion.

2 Related works
The rise of generative speech models has significantly impacted biometric authentication,
particularly in speaker verification. Text-to-speech systems have evolved from rule-based
pipelines to neural networks capable of generating highly natural, speaker-specific audio.
Models like Tacotron [26] and FastSpeech [21] laid the foundation for expressive end-to-end
synthesis via spectrogram prediction. More recent approaches integrate waveform genera-
tion into unified architectures, often combining linguistic encoding with adversarial training
to improve fidelity [12, 13]. Voice conversion, by contrast, aims to alter speaker identity
while preserving linguistic content. A major advance is the shift to non-parallel training,
which removes the need for aligned recordings [4, 11]. These capabilities pose a grow-
ing threat to speaker verification, especially in black-box settings where attackers have no
access to the system internals but can collect short audio samples of the target [9, 22]. Re-
cent work has shown that even brief samples suffice to build effective impersonators when
high-capacity VC techniques are used [3, 16]. Among them, retrieval-based voice conver-
sion (RVC) stands out for its ability to disentangle speaker and linguistic information, re-
synthesizing high-fidelity speech with minimal training data. In response to these threats,
considerable effort has been devoted to the development of spoofing detection methods, with
the ASVspoof challenge playing a key role in benchmarking countermeasures under stan-
dardized conditions [6, 23]. The SpoofCeleb benchmark [10] further expanded this line of
research by introducing a large-scale evaluation suite spanning 23 spoofing techniques and
multiple ASV systems, including spoofing-aware ASV (SASV) pipelines trained on Vox-
Celeb. Similarly, recent analyses examined ASV robustness under TTS/VC attacks [9] and

1https://github.com/PRALabBiometrics/VocID/

Citation
Citation
{Zhang, Cui, Nguyen, and Whitty} 2025

Citation
Citation
{Jung, Wu, Wang, Kim, Maiti, Matsunaga, Shim, Tian, Evans, Chung, et~al.} 2025

Citation
Citation
{Wang, Yan, Ivanov, and Chen} 2023

Citation
Citation
{Wang, Skerry-Ryan, Stanton, Wu, Weiss, Jaitly, Yang, Xiao, Chen, Bengio, et~al.} 2017

Citation
Citation
{Ren, Hu, Tan, Qin, Zhao, Zhao, and Liu} 2020

Citation
Citation
{Kim, Kong, and Son} 2021

Citation
Citation
{Kong, Kim, and Bae} 2020

Citation
Citation
{Chou, Yeh, and Lee} 2019

Citation
Citation
{Kameoka, Kaneko, Tanaka, and Hojo} 2018

Citation
Citation
{Jung, Wang, Evans, Watanabe, Shim, Tak, Arora, Yamagishi, and Chung} 2024

Citation
Citation
{Tian, Das, and Li} 2019

Citation
Citation
{Casanova, Weber, Shulby, Junior, G{ö}lge, and Ponti} 2022

Citation
Citation
{Li, Guo, Chen, and Yu} 2024

Citation
Citation
{Delgado, Evans, Kinnunen, Lee, Liu, Nautsch, Patino, Sahidullah, Todisco, Wang, et~al.} 2021

Citation
Citation
{Todisco, Wang, Vestman, Sahidullah, Delgado, Nautsch, Yamagishi, Evans, Kinnunen, and Lee} 2019

Citation
Citation
{Jung, Wu, Wang, Kim, Maiti, Matsunaga, Shim, Tian, Evans, Chung, et~al.} 2025

Citation
Citation
{Jung, Wang, Evans, Watanabe, Shim, Tak, Arora, Yamagishi, and Chung} 2024



: 3

Figure 1: Attack scenario investigated in this study.

multimodal deepfakes [14]. Practical studies also tested commercial assistants (Alexa, Siri,
Bixby) against synthetic speech [1, 25], exposing challenges from device-specific latency
and ASR integration.

While prior work mainly considers long-form or replay scenarios, limited research has
focused on short, fixed-phrase commands typical of authentication pipelines. Our contri-
bution is a targeted, multi-dataset evaluation of deepfake spoofing under pitch and gender
variation within a composite ASV+ASR framework.

3 Methodology
In this section, we describe the overall pipeline of our attack simulation, aligned with the
scenario (Figure 1), which is organized into four main stages: Speech Source, Deepfake
Generation, Attack, and Impact. In the following subsections, we formalize the attack path
and introduce the datasets, generation models, and speaker recognition systems.

3.1 Threat Model
We consider a logical access attack scenario in which a malicious actor attempts to imper-
sonate a target speaker by injecting synthetic speech signals generated through voice cloning
techniques into an ASV system. The attacker’s objective is to produce a synthetic speech
signal that is accepted by the system as if it originated from the legitimate enrolled speaker.
The attack is carried out in a black-box setting, that is, without knowledge of the architecture,
embeddings, or thresholds of the ASV system. However, access to the following resources
is considered available to the adversary:

• a small set of speech recordings belonging to the target speaker, denoted as DT ;
• a generative function G(·) capable of synthesizing speech conditioned on an input utter-

ance and the speaker identity inferred from DT ;
• knowledge of the intended voice command to be issued, denoted CT .

The attacker speaks the desired command CT using their own voice, and the generative model
produces a synthetic version S of the utterance in the target speaker’s voice:

S = G(CT |DT ) (1)

The attacker then presents S to the ASV system. Let A denote the ASV system, and TV the
enrolled template corresponding to speaker VT . The attack is considered successful if the
similarity score A(S,TV ) exceeds the decision threshold τ , leading to a false acceptance:

A(S,TV )≥ τ (2)

Such attacks are especially dangerous in voice-controlled systems that rely on short com-
mands for secure operations, including banking interfaces, smart home systems and item
and voice-based authentication.
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3.2 Speech Source
We use three datasets to simulate enrollment data and to provide speaker-specific material
for voice cloning and verification. Two of them (VoxCeleb1 and VoxCeleb2) are publicly
available datasets widely adopted in the speaker recognition community. The third is a pro-
prietary collection designed explicitly for command-driven speaker verification under con-
trolled conditions: the Voice Command Identity Dataset (VocID).
VocID – Voice Command Identity Dataset
As part of this study, we collected a dataset tailored for speaker verification based on short
spoken commands. The corpus comprises recordings from 30 Italian-native participants (18
male, 12 female), acquired under supervised and noise-controlled conditions. The partici-
pants span a range of ages, although no specific restrictions on regional accent were imposed.

Each speaker completed a fixed protocol comprising:
• 8 single-command sessions: 15 repetitions each of conferma, confirm, accetta,
accept, rifiuta, reject, elimina, delete;

• 2 multi-command sessions with 2 repetitions per command, grouped by language;
• 4 reading tasks: two in Italian (short and long) and two in English (short and long).

Recordings were captured using two smartphones: Google Pixel 3a and iPhone 14. Each
speaker completed a single session in a quiet environment. All recordings are stored in 16-
bit PCM WAV format at 16 kHz. Available metadata include speaker ID, gender, device,
and language. Given the command-oriented nature of the utterances, the corpus is partic-
ularly suited for studying voice-driven security applications such as transaction approval,
smart home access, and digital authorization. This results in a total of 50.400 audio samples,
composed of 43.200 spoofed and 7.200 bona fide utterances All participants were fully in-
formed about the scope, objectives, and intended use of the data collected. Participation was
voluntary with explicit written consent.
VoxCeleb1 and VoxCeleb2
We used pre-trained ASV back-end models that were originally trained on the VoxCeleb1
(Vox1) and VoxCeleb2 (Vox2) datasets. These corpora are widely adopted benchmarks in the
literature, offering large-scale, unconstrained audio data collected from speakers in diverse
conditions. Vox1 [18] and Vox2 [5] are large-scale corpora of unconstrained speech collected
from available online interview videos. They feature thousands of speakers recorded under
various acoustic conditions and are standard benchmarks for speaker recognition research.
For these reasons, in the experimental evaluation, we selected these datasets to simulate a
baseline intra-dataset protocol. To maintain consistency with the trial structure used in the
VocID dataset, we selected 30 speakers from the development subset (15 male, 15 female).
For each speaker, one enrollment segment of about 20 seconds was extracted. The remaining
speech material was segmented into 60 non-overlapping 2-second clips, for a total of 1.800
probe utterances. All probes were drawn from regions disjoint from the enrollment audio to
avoid temporal overlap and ensure a clean separation between enrollment and test material.

3.3 Deepfake Generation
To synthesize spoofed utterances for each target speaker, we employ the Retrieval-based
Voice Conversion (RVC) framework2, a non-parallel speech-to-speech synthesis system that
enables high-fidelity voice cloning using limited training data. RVC operates by disentan-
gling the linguistic content from speaker identity in a source utterance and reconstructing

2Implementation of RVC can be found at: https://github.com/RVC-Project/Retrieval-based-Voice-Conversio n-
WebUI. Last accessed: 5 August 2025
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the same linguistic content using the vocal characteristics of a target speaker. The generative
process G(·) used in this work follows a four-stage pipeline:
1. Feature extraction: the input utterance CT is processed with a pre-trained HuBERT model
[8], which converts the waveform into a sequence of discrete linguistic units V that are in-
variant to speaker identity. These features encode the phonetic content of the utterance.
2. Speaker adaptation: for each target speaker, a dedicated voice conversion model is fine-
tuned using a small set of enrollment utterances DT . This allows the model to learn the
speaker-specific representation eT required for accurate identity transfer.
3. Voice conversion: the features V and the speaker representation eT are passed to a neural
vocoder based on VITS [12], which synthesizes a waveform Ŝ in the target speaker’s voice:

Ŝ = G(CT |DT ) = Vocoder(V,S) (3)

4. Pitch adjustment: A pitch shift T is applied to the waveform Ŝ to simulate cross-gender
adaptation.

3.4 Automatic Speaker Verification Systems
We evaluate the effectiveness of the spoofed commands against two representative automatic
speaker verification systems. Both systems operate in a verification setting, comparing a
probe signal S against an enrollment template TV to produce a similarity score A(S,TV ).

WeSpeaker (denoted as WS) [24] is an open-source speaker verification framework based
on deep discriminative embeddings. In our experiments, we adopt the English pre-trained
model provided by the toolkit, built on a ResNet-based architecture trained on Vox2 data.
The system operates in a text-independent setting and outputs fixed-length embeddings from
speech utterances, which are compared via cosine similarity for verification.

SpeechBrain (denoted as SB) [20] is an open-source toolkit that includes several speaker
verification recipes. In our experiments, we use the ECAPA-TDNN-based speaker recogni-
tion model trained on Vox1 and Vox2.Similar to WeSpeaker, the system produces fixed-length
embeddings and performs cosine-based verification.

4 Experimental Protocol
This Section presents the evaluation setup used to assess the vulnerability of automatic
speaker verification systems to cloned voice commands. The protocol, spoofing pipeline,
and training configuration are detailed below, along with the evaluation metrics.
To operationalize the threat model defined in Section 3.1, we implement a controlled pipeline
for the generation of deepfake probes. For each enrolled speaker VT , a set of synthetic utter-
ances is generated by conditioning the voice conversion function G(·) on a spoken command
CT issued by the attacker. The output is a deepfake waveform S = G(CT | DT ) designed to
imitate the voice characteristics of VT while preserving the linguistic content of CT .
The dataset DT used to fine-tune G consists of bona fide recordings from the target speaker.
In our setup, DT includes approximately 90 seconds of speech for VocID and 120 seconds
for VoxCeleb speakers, with slight per-speaker variability. The longer duration for VoxCeleb
reflects its more fragmented recording structure and helps maintain balance across datasets.
Three experimental parameters drive the cloning process: (i) the base voice VB, e.i. the iden-
tity of the cloning source, either male or female; (ii) the transpose factor T , a fixed pitch
shift applied to the synthesized signal, with values T ∈ {−8,0,+8} and (iii) the command
CT , short phrases related to voice-activated actions.
Each target-specific cloning model is fine-tuned for 1000 epochs with a batch size of 4.
The model operates at a sampling rate of 40 kHz, consistent with the architecture and RVC

Citation
Citation
{Hsu, Bolte, Tsai, Lakhotia, Salakhutdinov, and Mohamed} 2021

Citation
Citation
{Kim, Kong, and Son} 2021

Citation
Citation
{Wang, Chen, Han, Wang, Liang, Zhang, Xiang, Ding, Rohdin, Silnova, et~al.} 2024

Citation
Citation
{Ravanelli, Parcollet, Moumen, de~Langen, Subakan, Plantinga, Wang, Mousavi, Della~Libera, Ploujnikov, et~al.} 2024



6 :

pre-trained checkpoints. Training leverages pre-initialized weights for the generator and dis-
criminator. The resulting deepfake commands S are then submitted to the ASV systems for
verification against the enrolled templates, forming the basis of logical attack trials.
We adopt a closed-set verification setup. Each speaker is enrolled using a 20-second bona
fide segment. Probe comparisons fall into three categories: (i) mated comparisons, where
the probe and reference belong to the same speaker; (ii) non-mated comparisons, involving
different speakers; and (iii) deepfake attacks, consisting of deepfake utterances generated to
mimic the enrolled identity. Then, we assess the system performance using standard verifi-
cation metrics, including Genuine Acceptance Rate (GAR), False Match Rate (FMR), Re-
ceiver Operating Characteristic (ROC), and Area Under the Curve (AUC). To assess spoofing
vulnerability, we include the Spoof False Acceptance Rate (SFAR), which quantifies the ac-
ceptance rate of deepfake trials. Unlike the ISO-defined IAPAR [2], SFAR reflects logical
access attacks with no physical presentation. For spoof detection, we report Attack Presenta-
tion Classification Error Rate (APCER) and Bona Fide Presentation Classification Error Rate
(BPCER) [2], measuring misclassification of spoofed and bona fide inputs, respectively, at a
fixed decision threshold of 0.5.

Finally, we additionally integrate an automatic speech recognition (ASR) module into the
protocol. We adopt Whisper [19], a multilingual Transformer-based ASR model, to assess
the intelligibility of both bona fide and synthetic commands. Given an audio input, Whis-
per outputs a transcription ĈT , which is compared to the ground-truth command CT using
the Levenshtein distance [15], denoted as dL(ĈT ,CT ). A prediction is considered correct if
dL(ĈT ,CT ) ≤ dmax, where dmax is a tunable threshold controlling the tolerance to transcrip-
tion errors. This ASR-based intelligibility measure is later combined with ASV scores to
analyze the behavior of a composite verification pipeline under logical access attacks.

5 Experimental Results
In this Section, we present a detailed evaluation of the logical access attacks. The results are
organized to highlight (i) the general behavior of the ASV systems across different datasets
and spoofing conditions, (ii) the influence of pitch and speaker identity on attack effective-
ness, and (iii) the specific properties of deepfake speech in the VocID dataset.

Intra- and Cross-Domain Evaluation Figure 2 reports the ROC curves for the ASV sys-
tems WS and SB, evaluated on the VocID, Vox1, and Vox2 datasets. Two verification condi-
tions are reported: standard biometric verification (GAR vs. FMR) and logical access attack
evaluation (GAR vs. SFAR). The systems achieve high performance in the standard veri-
fication setting, with ROC curves showing clear separation between mated and non-mated
comparisons. Despite being a cross-dataset evaluation, VocID yields results comparable to
the intra-dataset scenarios of Vox1 and Vox2, indicating that both ASV systems general-
ize well to unseen domains when tested on bona fide speech. However, a different picture
emerges under deepfake attack conditions. Although Vox1 and Vox2 maintain relatively
stable behavior, VocID exhibits marked degradation, with significantly higher SFAR val-
ues. The increased vulnerability might be related to the quality of the speech material used
during the fine-tuning of the RVC models. In the VocID case, the attacker has access to
clean, carefully recorded samples acquired under controlled conditions, potentially enabling
more effective speaker adaptation and higher-quality synthesis. In contrast, the deepfakes
generated for Vox1 and Vox2 are based on in-the-wild recordings, often affected by back-
ground noise, acoustic variability, and overlapping speech, factors that reduce the fidelity of
the synthesized utterances and limit their effectiveness as attack probes. Moreover, while
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Figure 2: ROC curves for WS and SB on VocID (a), Vox1 (b), and Vox2 (c).

performance differences between ASV systems are generally small in the standard setting,
WS consistently yields lower SFAR values under attack, particularly in the most challeng-
ing scenario (e.i., VocID). Both systems, however, remain vulnerable to high-quality cloned
commands.

Intra- and Cross-Gender Evaluation To better understand how signal-level and speaker-
level properties influence spoofing effectiveness, we perform a fine-grained analysis condi-
tioned on the parameters introduced in Section 4. Each attack is defined by a base voice
identity VB ∈ {male, female}, a target speaker identity VT ∈ {male, female}, and a transpose
factor T ∈ {−8,0,+8} controlling the pitch of the generated speech. Figure 3 reports the
SFAR in all configurations of VB, VT , and T , across the three datasets and the two systems.
Several trends emerge from this analysis. We first consider the case where the base voice
and target voice belong to the same gender (VB =VT ). In this setting, the transpose factor T
plays a crucial role. Attacks with T = 0 consistently achieve the highest SFAR, indicating
that neutral pitch produces synthetic signals that closely resemble the target speaker, and are
therefore more likely to be accepted by the verification system. In contrast, both T = −8
and T =+8 significantly reduce the effectiveness of the spoofing attempt, particularly in the
Vox1 and Vox2 datasets, suggesting that unnatural pitch modifications can impair the simi-
larity between S and TV . When base and target genders differ, the role of T becomes even
more critical. Results show a clear asymmetry depending on the direction of the attack. In
female-to-male attacks, higher transpose values such as T = +8 lead to substantially lower
SFAR, likely because the resulting signal is excessively high-pitched. In contrast, T = −8
partially mitigates the mismatch by lowering the pitch and improving the success rate. Con-
versely, in male-to-female attacks, upward transposition results in better performance as it
helps approximate the expected spectral characteristics of the female target. In general, no
consistent advantage is observed for any gender as a base voice, suggesting that the effective-
ness of spoofing depends more on the interaction between VB, VT , and T than on the intrinsic
properties of the source speaker alone. A mismatch between the natural pitch of VB and the
expected pitch of VT , if not corrected appropriately through T , degrades the quality of the
attack. These dynamics become more evident when comparing datasets. For VocID dataset,
even under non-neutral pitch transformations (T ̸= 0), SFAR values remain high across both
intra- and cross-gender conditions. In contrast, Vox1 and Vox2 datasets show greater sensi-
tivity to T , with attacks becoming noticeably less effective as pitch diverges from the natural
target range. Finally, the gap between systems remains consistent: SB exhibits higher SFAR
than WS across nearly all configurations.

Deepfake Robustness in Command-Oriented Scenarios To further explore the behavior
of ASV systems under LAs, we analyze how similarity scores vary depending on recording
devices, command content, and recognition accuracy. Figure 4 shows the similarity scores
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Figure 3: SFAR across datasets and gender con-
figurations. Each bar group shows the effect of
pitch manipulation (T =−8,0,+8). Gender pairs
on the x-axis indicate the base → target voice.

Figure 4: Box plots of similarity scores
on VocID, grouped by device and com-
parison type (mated, non-mated, deep-
fake) for (a) SB and (b) WS.

between enrollment and probe recordings, recorded using Google and iPhone devices, evalu-
ated using the two systems SB and WS. Overall, the distribution patterns are consistent with
previous findings. Some minor variations across devices can be observed, particularly in
the spread of deepfake scores, but no substantial or systematic device effect emerges. Both
systems follow the same trend, with SB showing slightly higher scores across all probe types.

A complementary view is offered in Figure 5, which reports the similarity score distri-
butions grouped by target command. Across both systems, non-mated comparisons remain
consistently well-separated from the other classes, showing narrow distributions centred at
lower values. The distribution of deepfake scores shows some variability across commands,
with certain keywords such as Accept or Reject exhibiting slightly higher overlap with mated
probes. This variation may reflect differences in phonetic content, which could influence
how well speaker-specific characteristics are retained in the synthesized audio. Overall, WS
exhibits more regular and compact score distributions, suggesting a more stable behavior.

Real-world voice interfaces, however, do not rely on similarity scores alone. As outlined
in Section 4, our evaluation integrates the Whisper ASR module to account for intelligibility
in command-oriented scenarios. Figure 6 reports the cumulative ASR accuracy as a function
of the maximum allowed distance dmax, separately for bona fide and deepfake utterances.
While bona fide speech consistently achieves high accuracy, deepfakes perform noticeably
worse at stricter thresholds. Nevertheless, accuracy already approaches 60% at dmax = 2,
highlighting the potential threat cloned commands pose in voice-controlled security-sensitive
scenarios.

To assess the role of intelligibility on spoofing effectiveness, we evaluate a composite
ASR+ASV pipeline in which a trial is accepted only if both the ASV score exceeds a bio-
metric threshold and the ASR transcription distance satisfies dL ≤ dmax. We select the ASV
threshold that yields 99% GAR on the test set (in the absence of ASR) to examine the resid-
ual attack surface under strong verification performance. Table 5 reports GAR and SFAR
under varying ASR constraints. While stricter ASR filters significantly reduce SFAR, they
also lower GAR, as genuine commands may be rejected due to transcription errors. Impor-
tantly, even under realistic constraints (e.g., dmax = 1), over 50% of deepfake trials are still
accepted, underscoring the persistent risk posed by high-fidelity cloned speech.

To complement the evaluation of the spoofing pipeline, a standard deepfake detector
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Figure 5: Similarity score distributions per target
command, separated by comparison type (Mated,
Non-Mated, Deepfake).

Figure 6: Cumulative ASR accuracy
on bona fide and deepfake utterances
as a function of the maximum al-
lowed Levenshtein distance dmax.

VC Condition APCER (%) BPCER (%)
Male voice, transpose 0 4.24

40.11

Male voice, transpose +8 7.03
Male voice, transpose –8 6.33
Female voice, transpose 0 24.04
Female voice, transpose +8 34.75
Female voice, transpose –8 16.72

Table 2: APCER and BPCER results of
RawNet2 on the VocID dataset.

dmax no ASR 0 1 2 3 4
GAR SB (%) 99.00 64.67 66.56 71.83 80.94 86.42
SFAR SB (%) 94.39 38.13 50.06 53.88 64.01 75.60
GAR WS (%) 99.00 64.64 66.56 71.86 81.00 86.56
SFAR WS (%) 94.15 37.98 49.94 53.69 63.80 75.35

Table 3: GAR and SFAR at varying ASR
thresholds d, with fixed biometric threshold
ensuring GAR = 99% without ASR.

based on RawNet2 [6], the official baseline from the ASVspoof 2021 challenge, was evalu-
ated on the VocID dataset. The model was used without fine-tuning, simulating a zero-shot
scenario to assess cross-domain robustness. As shown in Table 2, the detector achieves low
APCER in male voice conditions (4.24–7.03%), but degrades sharply for female voices,
reaching 34.75% under pitch-shifted attacks. This gap may stem from gender imbalance
in training data or greater pitch variability in female voices, which may obscure synthetic
artifacts. Further investigation is required to isolate the acoustic factors responsible for this
vulnerability. Despite this, the most critical limitation lies in the high BPCER, which reaches
40.11%. Such performance highlights the unsuitability of out-of-domain detectors in inter-
active scenarios, where high rejection rates of genuine users undermine system usability.

6 Conclusions
This study investigates vulnerabilities of speaker verification in realistic voice command sce-
narios, focusing on short utterances and constrained prompts. We developed a reproducible
black-box attack pipeline using RVC and evaluated its impact across multiple systems and
datasets, including VocID, a corpus tailored to this setting. Analysis of pitch manipulation
and speaker pairing shows that aligning these parameters with source–target gender rela-
tions increases spoofing success. Integrating ASV and ASR into a joint decision pipeline,
we showed that deepfakes remain effective even under intelligibility constraints, with over
half the attacks succeeding. Finally, evaluation of a state-of-the-art detector in a zero-shot
setting reveals critical weaknesses, particularly against pitch-shifted female voice attacks.
Overall, our findings reinforce the need for countermeasures that address both biometric
and linguistic aspects in voice-based authentication, especially under constrained input and
operational conditions.
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