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Abstract

Indoor scene classification is a critical task in computer vision, with wide-ranging
applications that go from robotics to sensitive content analysis, such as child sexual
abuse imagery (CSAI) classification. The problem is particularly challenging due to
the intricate relationships between objects and complex spatial layouts. In this work, we
propose the Attention over Scene Graphs for Sensitive Content Analysis (ASGRA), a
novel framework that operates on structured graph representations instead of raw pix-
els. By first converting images into Scene Graphs and then employing a Graph Attention
Network for inference, ASGRA directly models the interactions between a scene’s com-
ponents. This approach offers two key benefits: (i) inherent explainability via object and
relationship identification, and (ii) privacy preservation, enabling model training without
direct access to sensitive images. On Places8, we achieve 81.27% balanced accuracy,
surpassing image-based methods. Real-world CSAI evaluation with law enforcement
yields 74.27% balanced accuracy. Our results establish structured scene representations
as a robust paradigm for indoor scene classification and CSAI classification. Code is
publicly available at https://github.com/tutuzeraa/ASGRA.

1 Introduction
Scene classification is a fundamental problem in computer vision, especially for indoor en-
vironments [18]. The goal is to categorize an image according to predefined scene types
(e.g., bedroom, living room), with indoor scene classification focusing on interior spaces.
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Beyond general-purpose applications, indoor scene classification has also proven useful in
highly sensitive domains, such as Child Sexual Abuse Imagery (CSAI) classification [7, 26].
Prior studies involving interviews with law enforcement agents have shown that environ-
mental and object-based contextual cues within a scene can serve as critical indicators of
inappropriate content [12].

Despite the availability of powerful approaches for indoor scene classification [28], sig-
nificant limitations persist [18]. The task is particularly demanding due to the high complex-
ity and variability of indoor scenes, characterized by a sheer diversity of objects, textures,
and colors. Additionally, inherent ambiguity and inter-class similarity, such as the subtle
distinction between a bedroom and a child’s room, make this task particularly challenging.

Scene Graphs (SGs) [10] offer a promising approach, representing scenes as structured
graphs where objects are nodes and their relationships are edges. Each scene is modeled as
a set of triplets in the form (subject, predicate, object), such as (bed, next to,
window), which explicitly encode semantic and spatial interactions between entities. Unlike
traditional image representations, SGs explicitly encode semantic and spatial interactions be-
tween objects, offering a compact and interpretable abstraction of the scene. This structured
format can be particularly valuable in indoor environments where object relationships dis-
tinguish visually similar scenes.

We introduce the Attention over Scene Graphs for Sensitive Content Analysis (ASGRA),
a novel framework that leverages the inherent structure of the scene, modeled via SGs, to
improve indoor scene classification. We use the extracted SGs as input to a Graph Attention
Network [27] (GAT), which effectively weighs the importance of each triplet within the
scene graph, thereby enhancing the model’s robustness in discerning similar classes.

One of the primary motivations for adopting this pipeline is its suitability for handling
highly sensitive content, such as CSAI. Since direct training on CSAI datasets is ethically
prohibitive and legally constrained, our approach offers a practical solution: using only scene
graph representations and corresponding high-level labels (e.g., “CSAI”, “Not CSAI”) from
law enforcement agents. This enables effective model training while maintaining strict ad-
herence to ethical and legal standards, without exposing researchers to harmful content.

2 Related Work
Pioneering work by Quattoni and Torralba [20] showed that indoor scenes possess unique
characteristics that make their classification inherently more difficult than outdoor environ-
ments. Consequently, specialized datasets such as MIT Indoor Scenes [20] and Places8 [26]
emerged, promoting focused research on indoor contexts.

More recent approaches leverage deep convolutional neural networks to capture local and
global features [22, 23, 32, 33], while methods employing Graph Neural Networks (GNNs)
explicitly model object relationships and spatial layout within scenes [1, 4, 9, 19]. In par-
ticular, these graph-based methods have demonstrated improved performance by encoding
relational semantics and structural information explicitly, thereby effectively addressing am-
biguities inherent to indoor scenes.

Most recently, Valois et al. [26] and Coelho et al. [6] have developed complementary
methods for scene classification, evaluated on Places8. Valois et al. [26] present a com-
prehensive study of self-supervised approaches, showing that a ResNet-50 fine-tuned on
the Barlow Twins protocol can leverage unlabeled data to achieve strong performance. In
contrast, Coelho et al. [6] propose a few-shot learning framework based on Vision Trans-
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Figure 1: The ASGRA framework processes input images through a pre-trained SGG model
to generate structured graph representations. Detected objects and bounding boxes become
node features while relations form edge features. A GAT performs learning and inference,
with attention pooling, and a multilayer perceptron (MLP) predicts the indoor scene category.

formers (ViTs), demonstrating competitive results with only five annotated examples per
class. However, both approaches rely on image-based representations rather than structured
graph representations, limiting their capacity to model complex spatial and semantic object
relationships critical for disambiguating similar indoor scene categories.

3 Our Approach
Our problem is formulated as follows: given an arbitrary indoor image I, our objective is
to classify it into one of the predefined indoor scene categories y ∈ C. Instead of operating
directly on pixel data from the image I, we extract an SG representation, G = (V,E), where
V is a set of nodes representing the objects and E is a set of directed edges representing the
relationships between them. After, we treat it as a graph classification problem: given the
scene graph G, the goal is to predict its scene label y ∈C.

Our proposed ASGRA framework consists of three main steps: (i) scene graph genera-
tion, (ii) feature extraction, and (iii) learning and inference. Fig. 1 illustrates our pipeline.

For the first step, we leverage Pix2Grp [14], an off-the-shelf SGG model based on a
Vision-Language Model architecture. Pix2Grp has an entity grounding module with the aim
of predicting the bounding boxes and labels of the objects in the scene. With the objects in
hand, a relationship construction module generates spatial and category labels to create the
relation triplets. Finally, we can perform a graph assembly that creates the scene graph G.

In the feature extraction step, node features are constructed by concatenating two types
of information for each node v ∈V : xv

t , derived from the token embeddings of the object
labels; and xv

bb, the normalized bounding box coordinates of the detected object. The final
node representation is a concatenation of the aforementioned features: xv

t∥bb = xv
t ∥ xv

bb. For
each edge e ∈ E, we extract features xe

t , derived from the token embeddings of the predicate
(relation). Finally, our graph features can be represented as Gx = (Vx,Ex), where Vx = {x0

t∥bb,

x1
t∥bb, . . . ,x

v
t∥bb} is the set of node features and Ex = {x0

t , x1
t , . . . ,x

e
t } is the set of edge features.

In the learning and inference step, we employ the GATv2 [2]. In this step, the graph
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is processed by computing attention coefficients for each edge, dynamically weighting the
influence of neighboring nodes during message passing. This attention mechanism allows
the model to focus on the most relevant triplets that drive the prediction. Finally, a graph
pooling layer aggregates the node representations into a single graph-level vector, which is
passed to an MLP for the final scene classification.

4 Experimental Results

4.1 Experimental Setup

Datasets. We evaluate our benchmark on the Places8 dataset [26]. Places8 is a curated subset
of the Places365 dataset [33], consisting of 407,640 images (256×256 pixels) selected from
23 of the original 365 scene classes. The authors remapped these classes into 8 indoor scene
categories, chosen for their relevance to frequently encountered environments in CSAI. We
follow the train/val/test experimental protocol proposed by the authors1.

For sensitive media evaluation, we collaborate with law enforcement to use the Region-
based Annotated Child Pornography Dataset (RCPD) [17], a private dataset maintained by
the Brazilian Federal Police. Originally designed for forensic analysis, the dataset lacks stan-
dard train/test splits and prohibits direct training access by non-law-enforcement personnel.

Through formal police collaboration, authorized agents perform SGG internally on RCPD
images, providing only resulting scene graphs to our research team. This ensures no sensi-
tive image access during the study. We train models using 5-fold cross-validation on these
graph representations, enabling effective evaluation without direct CSAI data access.

Vision-Language Model Baseline. To establish a solid point of comparison, we adopted a
Vision-Language Model (VLM) configured for a Visual Question Answering (VQA) task,
tailored to scene classification. VQA is a task in which a model receives an image alongside
a textual question and must generate an appropriate answer, combining visual perception
with natural language understanding. Our baseline uses the Large Language and Vision
Assistant (LLaVA) [15], which combines a vision encoder (e.g., CLIP [21]) with a language
decoder (e.g., Vicuna [5]). LLaVA’s multimodal instruction tuning enables highly accurate,
context-aware responses, making it an effective choice for our scene recognition task.

One of the primary reasons for adopting a VLM in this role is its versatility. Trained
on large-scale multimodal datasets, these models can adapt to a wide variety of visual con-
texts and maintain performance even in challenging conditions [30, 31]. Additionally, using
language in the form of VQA provides a flexible and robust evaluation protocol [25].

The overall pipeline operates in a simple yet effective manner. Images are processed
individually, each paired with the corresponding textual prompt. The model’s outputs are
parsed to extract the predicted category, which is then compared with the ground truth labels
for evaluation. This approach offers a robust and easily reproducible benchmark, enabling a
fair assessment of more specialized methods introduced in later sections.

Scene Graph Generation and Feature Extraction. We employ Pix2Grp [14] to generate
scene graphs due to its robust performance. The model outputs triplets comprising pre-
dicted subjects, objects, and their relationships. We used the model weights pre-trained
on VG150 [13], one of the most widely adopted datasets for evaluating SGG [14, 24, 29].

1Dataset splits are available at https://doi.org/10.5281/zenodo.13910525.
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Consequently, the predicted triplet labels are constrained to the 150 object classes and 50 re-
lationship classes defined in VG150, which do not contain object classes (e.g., intimate body
parts) or relationship classes (e.g., hugging, kissing, touching) directly related to CSAI.

For feature representation, each node is encoded by concatenating its label index with the
detected bounding box coordinates, while edge features correspond to the relation token ID.
Importantly, we avoid explicit image features to ensure privacy preservation, as incorporating
such features could enable reconstruction of sensitive images from trained models [3], which
is undesirable for sensitive media applications.

Implementation Details. All experiments are conducted on 5 NVIDIA RTX5000 GPUs.
Hyperparameter optimization is performed using the Optuna framework to efficiently ex-
plore optimal configurations.

For the baseline, we use LLaVA version 1.6 with the Vicuna decoder and provided hy-
perparameters. For our experiments, the model receives along the input image the following
prompt: “Classify the received image into one of the following 8 categories: (0) bathroom;
(1) bedroom; (2) child’s room; (3) classroom; (4) dressing room; (5) living room; (6) stu-
dio; or (7) swimming pool. Answer with only the number of the corresponding category
provided.” This prompt format ensures that predictions are both interpretable, constrained to
the desired label set and easy to parse.

The GAT model is trained using early stopping with a patience of 10 epochs based on
validation loss, with a maximum of 120 epochs. Cross-entropy loss is optimized via the
Adam optimizer [11], with an initial learning rate of 1×10−4 and weight decay of 3×10−5.
A batch size of 8 is used. To mitigate overfitting, a dropout rate of 0.2 is applied across all
GATv2 layers. The final architecture comprises two GATv2 layers, 364 hidden dimensions,
and 4 attention heads.

For the CSAI classification task, each fold of the 5-fold cross-validation protocol is
trained for 20 epochs, with a learning rate of 3.8×10−4, batch size of 8, and weight decay
of 1.4×10−5. The final CSAI model consists of two GATv2 layers, 128 hidden dimensions,
and 8 attention heads.

4.2 Results and Analysis

Quantitative Analysis. On Places8, the VQA-baseline achieved 77.69% balanced accuracy
on the test split, surpassing previous approaches: self-supervised learning (71.60% [26])
and few-shot learning (73.50% [6]). Despite being computationally heavy (7B parameters),
this baseline establishes a strong comparison point. Our proposed ASGRA achieved superior
performance at 81.27% balanced accuracy using only 242 million parameters, demonstrating
efficiency and scalability. Table 1 presents detailed comparisons.

Method Core Component(s) Input Modality #Params Acc. (%)

VQA-baseline [16] LLaVA v1.6 + Vicuna Image & Text 7B 77.69
Few-shot [6] ViT-Small Image 21.7M 73.50
Self-supervised [26] ResNet-50 Image 23.5M 71.60
ASGRA (ours) Pix2Grp + GATv2 Scene Graph 242M 81.27

Table 1: Comparative results on the Places8 test set. Our ASGRA framework is bench-
marked against state-of-the-art methods. ASGRA operates on scene graphs, a fundamentally
different input modality from image-based approaches.
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(a) VQA-baseline (b) ASGRA

Figure 2: Confusion matrices on the Places8 test split.

Detailed performance breakdowns are shown in Fig. 2. Considering the VQA-baseline,
Fig. 2 (a), the most frequent misclassification occurs between child’s room and bedroom, as
well as between child’s room and studio. Another notable confusion is between dressing
room and bathroom, where the baseline incorrectly predicts bathroom in 21.5% of dressing
room cases. Additionally, the model tends to confuse living room and studio. However, in
this case, the baseline is more accurate for studio and less accurate for living room, which
is the opposite pattern of our proposed framework. While the baseline shows slightly less
confusion between bedroom and child’s room than our proposed ASGRA framework, its true
positive rate for child’s room is considerably lower (52.4% vs. 65.4%). Overall, the baseline
exhibits lower accuracy for key classes compared to ASGRA.

For the ASGRA framework, Fig. 2 (b), we highlight the achieved high true positive rates
for categories with distinctive objects and spatial arrangements, such as bathroom, bedroom,
classroom, living room, and swimming pool. This suggests that the proposed framework is
effective in identifying discriminative triplets that characterize these environments. How-
ever, ASGRA’s most prominent confusion is between child’s room and bedroom, which is
intuitive given their shared core objects (e.g., beds, pillows, windows). A smaller but still
noticeable confusion occurs between living room and studio. Furthermore, we highlight
that ASGRA achieved higher accuracy than the baseline in bedroom, child’s room, dressing
room, living room, and swimming pool, showing its advantage in both overall classification
and in challenging class pairs. These specific confusion patterns are further explored in the
qualitative analysis section.

The performance achieved by our framework in Places8 motivated its application to the
sensitive-media scenario, where such discriminative cues could help capture context-specific
patterns. To that end, we conducted RCPD experiments using 5-fold cross-validation. Be-
yond balanced accuracy, we employed recall given its critical importance for sensitive con-
tent, as recall directly measures the model’s ability to detect CSAI, ensuring such instances
are not overlooked.

We began by training the best-performing architecture from Places8 from scratch on bi-
nary classification, achieving 72.42% balanced accuracy and 70.61% recall. Subsequently,
we investigated the potential benefits of transfer learning by fine-tuning the best pre-trained
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Training from scratch Fine-tuning (head) Fine-tuning (network) Optimization

Acc. (%) 72.42 71.28 73.25 74.27
Recall (%) 70.61 71.44 73.27 76.55

Table 2: 5-fold cross-validation results on the RCPD dataset with our ASGRA framework.

Class Top-10 Objects Top-5 Relations

bathroom sink, toilet, handle, door, window, towel,
cabinet, tile, shelf, counter

has, on, near, in
front of, in

bedroom pillow, window, table, chair, bed, door,
lamp, room, curtain, [unk_obj]

has, near, on, in
front of, with

child’s room flower, pillow, [unk_obj], window, table,
chair, shelf, bed, box, bear

has, on, with, near,
in front of

classroom man, boy, woman, girl, person, table, hair,
shirt, chair, [unk_obj]

on, has, in front of,
with, wearing

dressing room shelf, door, woman, man, handle, person,
window, shirt, bag, [unk_obj]

on, has, in front of,
with, under

living room chair, window, table, door, [unk_obj],
room, lamp, shelf, pillow, man

on, has, with, near,
in front of

studio man, woman, person, shirt, hair, head,
window, hand, chair, [unk_obj]

on, has, in front of,
wearing, holding

swimming pool window, chair, door, person, table, man,
pole, tree, [unk_obj], building

on, has, near, with,
in front of

Table 3: Top-10 most influential objects (nodes) and Top-5 most influential relations (edges)
per class, ranked by importance. They were aggregated from the GATv2 model’s attention
weights across all correct predictions in the validation set. The [unk_obj] token represents
objects not recognized in the vocabulary.

Places8 model. Fine-tuning only the classification head yielded 71.28% balanced accuracy
and 71.44% recall, while fine-tuning the entire network improved to 73.25% balanced ac-
curacy and 73.27% recall. These results suggest a significant domain shift between Places8
indoor scenes and the RCPD context, making naive transfer learning suboptimal. Finally,
new hyperparameter optimization with Optuna achieved our best results: 74.27% balanced
accuracy and 76.55% recall, underscoring the importance of architectural adaptation for
specialized real-world data. Table 2 summarizes these results.

Qualitative Analysis. Beyond the quantitative metrics, our framework provides inherent
explainability through Scene Graphs with Graph Attention Networks. By analyzing the at-
tention coefficients computed by the GATv2 layers, we can move beyond simply assessing
accuracy and begin to understand the model’s decision-making process. This analysis allows
us to pinpoint which objects and relationships contributed most to a given prediction.

First, we performed an aggregated analysis to understand the general patterns learned for
each class. By accumulating the attention scores across all correctly classified images, we
identified the most important features for each scene category (Table 3). Results confirm the
model learns intuitive, human-understandable patterns. For example, bathroom is strongly
characterized by objects like sink, toilet, and towel. Interestingly, for classroom,
the model learned that the presence of people (man, boy, and woman) was a more reliable
indicator than specific furniture, which can overlap with scenes like studio or living room.

The attention mechanism effectively diagnoses failure modes. Fig. 3 shows four predic-
tions (two correct, two errors) with SG subsets and attention scores. In the correct cases
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(a) Correct predictions (b) Wrong predictions

Figure 3: Qualitative results of ASGRA on Places8. Column (a) shows correctly classified
scenes, while column (b) shows misclassifications. Each image includes its scene graph with
GATv2 attention scores for nodes and edges. These visualizations showcase the model’s
ability to identify key semantic components for correct predictions and provide transparent
analysis of failure cases, including confusion between similar scenes.

(Fig. 3 (a)), the model assigns higher attention to class-defining objects and their incident
relations (lighter color bar tones), e.g., window/table for living room and sink/towel/
counter for bathroom. Attention also propagates to neighbors of important nodes, reflect-
ing the model’s focus on triplets relating to high-attention objects.

In Fig. 3 (b), we observe a typical source of error: upstream SGG hallucinations. The
detector incorrectly inserts a curtain next to a window, yielding the high-attention triplet
⟨window,has,curtain⟩, which steers the classifier toward living room contexts. Thresh-
olding SGG triplets by their confidence did not improve accuracy, as erroneous triplets often
receive high scores and survive filtering. This suggests robustness depends more on improv-
ing SGG quality and vocabulary than on simple score pruning.

In the first case of Fig. 3 (b), the model confuses child’s room with bedroom, a frequent
ambiguity in Places8. Although the graph includes cues such as bear, face, and pillow,
the closed vocabulary cannot express concepts like toy, cartoon, or other child-specific
attributes, limiting the semantic signal available to GATv2. Moving to an open-vocabulary
SGG or enriching the label space with attributes (e.g., toy, crib, cartoon pattern)
should help disambiguate these classes by capturing the semantics that distinguish a child’s
room from a bedroom.

In collaboration with law enforcement, we performed the same analysis for CSAI classi-
fication. Table 4 showcases the most important objects and relationships for discerning be-
tween categories, enabling nuanced scene understanding even without directly viewing im-
ages. For detecting CSAI, handwas the most important object with holding and near as
key relationships. This aligns with what expert law enforcement agents may identify during
manual screening, indicating the model’s capability to assign attention where most relevant.

For each evaluated image, a large set of object relations was generated. Although the
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Class Top-10 Objects Top-5 Relations

CSAI hand, woman, head, girl, boy, [unk_obj], man, person, arm, leg has, on, near, holding, in front of
Not CSAI woman, girl, [unk_obj], hand, head, hair, man, shirt, boy, leg has, on, behind, near, wearing

Table 4: Top-10 most influential objects and Top-5 most influential relations per category,
ranked by importance, for the RCPD dataset.

Category Acc. (%) Description

CSAI 76.97 Child sexual abuse imagery
Not CSAI – child 74.29 Images containing children
Not CSAI – adult 77.34 Images containing adults
Not CSAI – suspicious 72.55 Children/adolescents in underwear, swimwear, or shirtless
Not CSAI – pornography 72.41 Pornographic content
Not CSAI – normal 84.62 No nudity
CSAI and Not CSAI – global 76.69 Overall dataset

Table 5: Accuracy of ASGRA in CSAI classification on RCPD, reported by image category.
While the task remains the same, results are broken down by image content.

Step Model #Images Energy (kWH) CO2-eq (kg)

SGG Pix2Grp [14] 407,640 1.0136 0.3960
GNN GATv2 [2] 364,806 1.3520 0.1330

Table 6: Average energy consumption and equivalent CO2 emissions (CO2-eq) for each step
of our method.

relation confidence was not the analysis focus, we observed that among the most relevant
relations (considering both score and the top-10 most influential classes for CSAI classifi-
cation), some were consistent with the actual image content. However, we also identified
implausible or semantically inconsistent relations. This reflects domain shift and the pres-
ence of close-ups and task-specific CSAI content containing visual elements that are presum-
ably absent from the base vocabulary used for object and relation tokenization, highlighting
natural limitations in visual element coverage.

Table 5 shows model accuracy for CSAI classification by image category. Accuracy
varies across subsets, with the normal category reaching 84.62%, well above the global av-
erage, showing effective classification when no sexual or suggestive content is present. In
contrast, performance drops to around 72% for the more challenging suspicious and pornog-
raphy categories, which involve higher visual variability and ambiguous boundaries. For
CSAI, results are comparable to the global accuracy (76.69%), indicating that despite object-
relation vocabulary limitations and the presence of many irrelevant relations, the model suc-
cessfully exploits the most informative ones to produce adequate final decisions.

Environmental Impact Analysis. We also assess the environmental impact of our exper-
iments by quantifying the energy consumption and carbon footprint. To that end, we em-
ployed the CodeCarbon tool [8], which tracks the power usage of our hardware configuration
and estimates the carbon emissions generated during the computational processes involved
in SGG and GNN training. Table 6 details energy consumption metrics.
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5 Conclusions
In this work, we introduced ASGRA, a novel framework for indoor scene classification that
leverages the semantic and the structure of Scene Graphs. Using a Graph Attention Network,
our method achieves state-of-the-art 81.27% balanced accuracy on Places8. In collaboration
with law enforcement, we evaluated ASGRA on real-world CSAI datasets, obtaining 74.27%
balanced accuracy for CSAI classification, showcasing practical utility in digital forensics.
The framework’s primary strengths are its inherent explainability through attention weight
analysis for error diagnosis, and privacy-preserving architecture suitable for sensitive appli-
cations like CSAI analysis.

While promising, performance depends on upstream Scene Graph Generation quality
and is constrained by closed-set vocabulary. Future work will focus on integrating advanced,
open-vocabulary SGG models and enriching the graph’s node and edge features to overcome
these limitations.
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