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Abstract

Ensuring safety in human-robot interaction requires reliable detection in industrial
environments, yet the prohibitive cost of data annotation remains a major obstacle. We
present a novel and cost-effective framework for automatic data generation and labeling,
enabling unsupervised learning with state-of-the-art super-resolution LiDAR systems.
Our method leverages recent advances in mesh reconstruction and animated 3D assets to
create realistic synthetic datasets, surpassing existing augmentation strategies in fidelity
and scalability. Beyond this, we introduce a second self-supervised stage that iteratively
refines the model and bridges the virtual-to-real domain gap. Evaluations on real-world
scenarios show substantial gains in performance.

1 Introduction

Ensuring safety in robotic systems is a critical challenge in environments where humans and
large machines share confined spaces. Failures in detecting humans or robotic movements
can result in severe accidents or fatalities. As collaborative robots proliferate, the demand for
robust Al models capable of reliable detection has become urgent, yet progress is constrained
by the scarcity of high-quality labeled data: collecting and annotating complex, cluttered,
and dynamic industrial scenes is costly, labor-intensive, and rarely captures rare edge cases
essential for safety validation.

Manual annotation at scale quickly becomes impractical, while traditional data collec-
tion fails to record high-risk scenarios, leaving safety-critical blind spots. To address data
scarcity, simulation platforms such as CARLA [5] and synthetic city-scale datasets [8] gener-
ate LIDAR-like environments for autonomous driving. However, these approaches primarily
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focus on moving sensors in outdoor environments, where they typically maintain a horizontal
viewpoint. In contrast, industrial sensors are often mounted overhead in relatively static en-
vironments. Moreover, these methods often fail to capture the fine-grained sensor effects of
high-precision LiDAR systems, leading to a domain gap that limits real-world performance.

In this paper we propose Raphael, a framework for automated and realistic data gen-
eration and labeling, designed for detecting humans and large robots in 3D point clouds
from state-of-the-art sensors [1]. Unlike prior work, our method directly addresses the chal-
lenges of indoor industrial environments by generating realistic and context-adapted scenar-
ios, modeling sensor effects and employing a self-learning loop that iteratively adapts to
real-world data.

We address these challenges through three key contributions:

1. Realistic 3D data generation: We introduce a novel 3D modeling algorithm that simu-
lates the complex scanning process of the sensor and inserts realistic human and robot
models into synthetic scenes. This automated approach drastically increases training
data diversity and outperforms conventional data augmentation techniques.

2. Sensor effect simulation: We develop a method to process synthetic data by repli-
cating sophisticated LiDAR effects, bridging the gap between virtual and real-world
data. This allows us to train an initial "first-stage" model with enhanced robustness to
sensor-specific noise and artifacts.

3. Self-learning adaptation: We introduce a self-learning phase, where the initial model
generates predictions on real-world samples, which are then used as pseudo-labels for
fine-tuning. This iterative process enables the model to gradually adapt to real-world
conditions, even with minimal ground truth annotations.

Related Work Acquiring and annotating high-quality data remains a major challenge for
training robotics and computer vision systems, particularly for point cloud processing. This
has motivated alternatives to conventional data collection.

One line of research develops synthetic 3D environments to generate LiDAR-like point
clouds via sensor simulation. CARLA [5] and AirSim [19] produce such data using raycast-
ing, while Blensor [9] extends Blender to simulate range scanners. These frameworks are
mainly designed for autonomous driving and standard LiDARs. In contrast, our work targets
a Super-Resolution LiDAR in industrial settings, requiring new methodologies for realistic
point cloud generation and annotation.

A second area addresses the domain gap between simulated and real LiDAR data. Prior
work [11, 17] highlights discrepancies such as missing echoes and unreturned rays, but
largely within open-loop driving scenarios. Our focus is domain adaptation with dynamic
actors in real industrial environments.

A third line concerns data augmentation. Methods like SECOND [26], PPBA [4], Pseu-
doAugment [13], and PolarMix [23] improve generalization by planting objects, self-training,
or pseudo-labeling. Different from those works, our approach extends the concepts of plant-
ing objects in the scene and self-training by extending data augmentation with realistically
modeling sophisticated 3D scanning systems.

Further advances address realism through occlusion handling [6, 18], generative strate-
gies for synthetic scans [3, 15, 27, 29], or hybrid approaches mixing rendering and learning
[14, 16]. Unlike these methods, which often rely on secondary models, we directly model
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Figure 1: Illustration of the developed methodology for our realistic human-robot 3D data
generation and pseudo-labeling (Raphael).

the real sensor for data generation and employ pseudo-labeling, enabling a more faithful
alignment of synthetic and real domains.

Main technical contribution To the best of our knowledge, this is the first effective ap-
proach for automatic data generation and augmentation that realistically models advanced
3D scanning systems for unsupervised learning of human and robot detection in real-world
scenarios. By addressing the limitations of existing simulation platforms and overcoming
the domain gap, our approach sets a new standard for safety-driven Al systems. We will
make our code available to accelerate research in safe human-robot collaboration.

2 System Description

Next we present our system for realistic human-robot data generation and pseudo-labeling,
termed Raphael. As previously mentioned, Raphael is designed to address the challenges
associated with acquiring high-quality labeled point cloud data and leveraging the abundance
of unlabeled data available in real-world scenarios. Our approach is divided into three main
steps, each focusing on either data generation or staged model training (see Fig. 1).

A real Super-Resolution LiDAR is deployed in a new environment where it has not been
previously calibrated. Our approach builds an automated data generation pipeline using a
virtual sensor and a simulated copy of the scene to fabricate synthetic training samples.
These samples, combined with a small set of previously labeled ground truth from past
testing scenarios, train an initial model. Once operational, the model generates pseudo-
labels for incoming unlabeled data, which are then used in a second stage to refine the model,
improving performance while mitigating virtual-to-real domain gap effects.

The rest of this section is organized as follows. The first subsection named Sensor
Simulation deals with various aspects of modeling a high-resolution LiDAR and the world
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Figure 2: Reality vs. simulation. The left column shows the physical sensor and a real
scan with its characteristic star pattern. The middle column depicts the simulated sensor
and its virtual scan of the same environment. The right column presents a close-up of the
reconstructed mesh with overlaid point clouds (red: real, white: simulated).

around it with the aim of extracting virtual data samples in an automated way. Here, Super-
Resolution LiDAR concerns the actual sensor and Scene Reconstruction explains how vir-
tual environments are derived from real point clouds. The next two paragraphs address the
objects we aim to detect: Mobile Robot Simulation covers the kinematic modeling and in-
tegration of a robotic arm while 3D People Modeling outlines the generation and placement
of realistic human models. Closing this subsection, Bridging the Domain Gap presents
techniques for aligning synthetic and real data by simulating various real-world phenomena.
The next two entries, Stage 1 Training and Stage 2 Distillation, describe the initial learn-
ing phase using the previously generated data and the subsequent refinement stage, where
pseudo-labels from Stage 1 guide the training of a second model.

2.1 Sensor simulation

Super-Resolution LIDAR  The real data is acquired using a high-performance LiDAR sys-
tem developed from the prototype in [1, 2], shown in Fig. 2. This sensor features eight mirror
segments inclined at 34°, enabling accurate 3D data capture of people and robots in indus-
trial environments. The specific model is the Ouster OS1-128,' which employs 128 laser
emitters distributed over a 45° span, producing 128 x 4096 data points per frame. For our
dataset we configure it at 128 x 2048 points and 10 frames per second, yielding detailed,
real-time point clouds suitable for safety-critical applications.

To replicate this system virtually, we construct a Super-Resolution LiDAR simulation in
Blender (Fig.le, Fig.2), as it provides raycasting, surface intersection and normal estimation
modules, together with Python scripting and easy integration of external assets. Our virtual
sensor pipeline is built from scratch using geometry nodes to handle ray emission, mirror
reflections, and sensor configuration. The model initializes arrays of rays in a user-defined
spatial pattern, directs them toward configurable planar mirrors, computes reflections based
on surface normals and, finally, records point intersections with scene objects. This design
allows flexible modeling of LiDAR structure and optical effects in a virtually unlimited en-

IDatasheet: https://data.ouster.io/downloads/datasheets/
datasheet-rev7-v3pl-osl.pdf, accessed October 2025.
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Figure 3: Examples of generated data. The first image shows virtual LIDAR readings inter-
acting with a 3D model and its surrounding scene. Subsequent images display samples from
our generated database, including automatically labeled point clouds with various poses and
occlusions.

vironment. At this time we omit simulating the LiDAR intensity channel as experimentation
on the current dataset and task did not demonstrate its usefulness. A visual comparison
between real and simulated point clouds is presented in Fig. 2.

Scene reconstruction Acquiring labeled data is often difficult, so we propose an alterna-
tive: scanning the empty environment, reconstructing meshes using recent surface recon-
struction methods, and then populating the scene with virtual people. To improve accuracy,
we aggregate several point cloud scans within a short time window and compute the median
for each point (Fig.1b). The resulting refined cloud serves two purposes: (i) positioning vir-
tual humans in realistic locations, and (ii) reconstructing a 3D surface to accelerate ray—mesh
intersections (Fig.1a). For the latter, we rely on an off-the-shelf mesh reconstruction method.

For the former, we categorize the point cloud into three classes: (a) ground, represent-
ing walkable areas; (b) desk, representing seating surfaces; and (c) other, including walls,
objects, and remaining structures (Fig. 1¢). This prevents unrealistic placements that could
blur the distinction between humans and background. Ground and desk classes are extracted
using RANSAC-based plane detection followed by DBSCAN clustering to isolate horizontal
planar segments. Large segments are classified as ground, while desk segments are identified
at approximately 0.7 m height. From these, we generate voxel maps indicating likely human
positions, similar to [6].

Modeling the mobile robot To support early-stage development, we constructed a mockup
of the target robotic system (Fig. 4a). The final platform combines a Stdubli TX90L manip-
ulator with a Ridgeback Automated Guided Vehicle (AGV) from Clearpath Robotics, but
only the manipulator and its control equipment are modeled here, as the AGV is not visible
in the bird’s-eye view used in simulation.

The links and kinematic structure of the robotic arm, provided by the manufacturer, serve
as the foundation for the simulation. Using this data, we implement the kinematic model in
Blender to replicate the movement and constraints of the real-world manipulator. Random
joint configurations are then generated algorithmically within physical limits, ensuring that
simulated movements remain operationally valid and consistent with the real system.

3D people Modeling We require 3D human models to accompany the robot in the simu-
lated scene (Fig.1f). While recent generative methods exist [24, 25, 28], we opt for using
animated human assets from a publicly available 3D model pack for efficiency. Before utiliz-
ing these assets, we conduct a brief analysis of person sizes in our training set and align the
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(b)

Figure 4: (a) The real arm robot (left) and its virtual counterpart (right). (b) Mirror edge
drop. (left) a real scan, (right) a sampled edge drop mask where white regions represent
dropped readings. In our case this pattern repeats eight times, once for each mirror.

3D models accordingly to further narrow the gap between the virtual and real domains. Hav-
ing previously extracted sensible locations, we can now place virtual people into the scene
while varying the size, placement, pose or animation keyframe, and, of course, the models
themselves (Fig. 3). With these elements, we can generate large numbers of diverse training
samples (Fig. 1g), expanding the dataset while emphasizing the target environment.

Bridging the Domain Gap Real LiDAR data is influenced by various environmental and
sensor-related phenomena, leading to inaccuracies such as measurement imprecision and
dropped readings. Previous studies, such as [17], have attempted to replicate these effects on
synthetic data, demonstrating the value in doing so. In line with this, we adopt a methodology
similar to [14]. We simulate three relevant effects, the first two having also been found as
most impactful in prior research [17], and the third specific to our sensor type:

* Ray drop (missed readings). Repeated scans of the same scene naturally yield miss-
ing returns. We estimate drop ratios from the total readings and aggregate probabilities
across bins defined by beam range d and incidence angle ¢, computing d, ¢ and P for
each. To generalize beyond discrete bins, we train a small MLP to predict drop prob-
ability conditioned on synthetic (d, ¢), similar to [14], and sample from it at runtime.

* Range noise. ToF variance is measured by comparing multiple readings against their
median. The error distribution (A) approximates but does not perfectly fit normality
(Shapiro-Wilk statistic 0.88). We nonetheless model it as Gaussian: bins of (d,¢,&)
are used to train an MLP that outputs & given (d, ). At runtime, we sample from this
distribution to inject a ARange perturbation as a ToF error along the beam direction.

* Mirror edge drop. A systematic loss at reflective boundaries arises from beam split-
ting, causing persistent gaps in returns. Because this is sensor-specific and largely
constant, we precompute high-probability (> 90%) drop masks per (x,y) pixel in the
128 x 2048 range image. At runtime, we sample M,;q. from these masks and remove
the corresponding points. See Fig. 4b for an example, Fig. 1d for integration.

2.2 First stage training

With the small amount of human labeled ground truth data we have available (Fig. 1j) and
the newly generated data (Fig. 1g), we can now train a preliminary model. We name this
to be our Stage 1 (Fig. 1i) model assuming that we could not, in spite of our efforts, truly
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Method People AP People AP Robot AP Robot AP
ToUsp > 50% | IoUpgy >25% | IoUsp >50% | IoUggy > 50%

Baseline (no scene D) 0.01 0.46 N/A N/A

; GT-Aug (with Dppry) 71.34 74.47 N/A N/A

‘8 Ours Stage 1 (Dempry + Dyiruat) 81.02 85.80 77.13 77.13
Raphael - Ours Stage 2 (D pseudo) 82.80 88.08 84.28 84.28

5 | Baseline (no scene D) 0.01 6.90 N/A N/A

T | GT-Aug (with Deppry) 74.21 82.63 N/A N/A

E | Ours Stage 1 (Dempry + Dyirtuat) 75.81 84.08 77.61 78.56

£ Raphael - Ours Stage 2 (D pseudo) 78.46 85.64 80.67 79.85

Table 1: Experimental results. We report average precision (AP) for 3D bounding boxes
and bird’s-eye-view (BEV) 2D boxes across IoU thresholds. (a) Baseline: trained only on
scenes A, B, C, without Copy/Paste augmentation, showing poor generalization to scene
D; performance is further reduced by sensor placement in D at roughly twice the height of
prior setups, altering LiDAR range and density. (b) GT-Aug: Copy/Paste augmentation of
people from A, B, C into Deypyy (robot class absent in training). (c) Ours Stage 1: adds our
automatically generated D, labels to the Baseline setting. (d) Raphael: final Stage 2
model trained on ground truth and pseudo-labels from D40, produced by the Stage 1
model on real unlabeled data.

replicate reality. However, using this first stage as an intermediary one, we aim to further
improve results by leveraging it during a second iteration.

2.3 Second stage distillation

Our objective here is twofold: (a) to incorporate new unlabeled samples as they become
available, (Fig. 1h) utilizing our Stage 1 model as a teacher, and (b) to mitigate the domain
gap penalty introduced by the initial training with synthetic data.

Accordingly, we utilize the Stage 1 model to generate predictions for real unlabeled data,
applying a thresholding operation on the confidence of each prediction. Following this, we
merge the newly constructed pseudo-labeled training set (Fig. 1k), comprising all sufficiently
confident detections, with the original ground truth. Finally, we train (or fine-tune) the Stage
2 model (Fig. 11) using this combined dataset comprised entirely of real-world samples.

3 Experiments and Results

Our ground-truth dataset consists of three training scenes (Asrqin, Brrains Cirain), manually
labeled, and one testing scene (Dy.s). The training scenes contain on average 2.7, 23.2,
and 3.1 people per frame, respectively, for a total of 2652 frames. Unfortunately, none of
these training sets include the robot class. The test set (D;.s) comprises 600 frames from a
5-minute recording of the robot and roughly five people, annotated at 2 fps. From the same
environment we additionally collect D¢y, 1y, @ small scan of the empty scene during off hours.
This scan, together with synthetic data generation and Stage 1 training, can be viewed as an
initialization step.

Following from Dy, We generate 1500 virtual training samples using the sensor-
simulation pipeline described in Section 2.1. Each frame averages 4.4 persons and 1 robot,
forming our D,y labeled set. Human figures are drawn from the Procedural Crowds
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Method Detection AP Detection AP

TloUsp > 70% ToUpry > 50%
SR LiDAR Simulation 75.98 76.84
+ Noise Modeling (Stage 1) | 77.61 78.55
Raphael (Stage 2) 80.67 79.85

Table 2: Ablation study demonstrating the impact of each stage on overall performance,
specifically for the Robot class trained solely on synthetic data.

Standard database [20], which provides 22 models and 9 animations; for every sample we
randomize count, size, placement, rotation, animation, and keyframe. For the robot, beyond
altering position within the virtual space, the animated arm is randomized across its six pivot
joints. To ensure physical plausibility, a self-intersection check prevents unrealistic overlaps,
but otherwise the aim is maximum variability, driving the robot through a broad range of mo-
tion. In terms of efficiency, generating one virtual frame averages 27.6 seconds, compared
to 6.2 minutes for manual annotation of a real frame under similar conditions (same scene,
similar number of objects). As the process is offline, runtime optimization is not essential.
For instance, an automated pipeline could scan an empty environment overnight, generate a
small set of virtual annotations, and fine-tune the model by morning.

Environmental surfaces are reconstructed using NKSR [10], producing a high-quality
3D mesh. To bridge the domain gap, we then simulate three error types. For the first two
(ray drop and range noise), we bin usable ranges d (2—-16 m, 56 bins) and incidence angles ¢
(16 bins). For each bin we compute drop probabilities and range-error standard deviations,
discarding bins with fewer than 100 samples, and train two MLPs to predict these statistics
from (d, ¢). For mirror edge drops no predictor is needed as we directly sample probabilities
following the procedure described in Section 2.1.

All models and detection evaluations are implemented in OpenPCDet [21]. For aug-
mentation we adopt the built-in Copy/Paste (GT-Aug) procedure, derived from Ghiasi et al.
[7] and widely used in 3D detection [4, 12, 26]. GT-Aug builds an object database during
preprocessing by extracting all labeled instances, then pastes a random subset onto training
samples up to a class-specific cap N. In total, we obtain 24,687 person instances from ground
truth and 8,493 instances (persons & robot) from our generated dataset. While ground-truth
instances are abundant, many are redundant due to the 2 fps capture rate and repeated scenes;
in contrast, our synthetic data avoids this by randomizing parameters across assets.

We evaluate two detectors: DSVT [22] and PointPillars [12]. Both are trained with a
scene size of (32,32,4) m and voxel size (0.1,0.1,4) m, using NMS=0.25, batch size 4, and
standard flip/rotation/translation augmentations. Optimizer (Adam + OneCycle, Ir=10"3)
and other hyperparameters follow defaults. To observe maximum performance, no validation
split is used; instead, we track test-set results directly and report the best stable performance.
Final models are obtained by weight-averaging the last five epochs once metrics converge.

For Stage 2, we use the Stage 1 model to generate predictions on 1200 unseen unlabeled
frames from scene D (Ours Stage 1 in Table 1). Applying a confidence threshold of 0.6 yields
the pseudo-labeled set D geuq0. A new model is then trained on the union of ground-truth
data (scenes A, B, C) and D 4., initialized from Stage 1 weights; training proceeds until
test metrics stabilize. We denote this final Stage 2 model as Raphael (Table 1).

Table 1 shows that both components of our pipeline—high-resolution sensor simula-
tion (Stage 1) and pseudo-label distillation (Stage 2)—outperform the standard GT-Aug
(Copy/Paste) baseline. Notably, the robot class achieves competitive performance even when
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trained only on synthetic data. We further analyze the impact of our iterative approach for
progressively improving detection by considering an ablation study in Table 2.

4 Conclusion and Future Work

We introduced Raphael, a framework for automated, high-fidelity data generation and la-
beling for human and robot detection in 3D point clouds. Using a high-resolution LiDAR
system, we construct detailed virtual datasets that complement scarce ground truth and sig-
nificantly improve detection performance. A second stage of self-supervised training fur-
ther boosts results by leveraging pseudo-labels from real data, effectively distilling synthetic
knowledge while narrowing the virtual-to-real gap. Our experiments demonstrate both strong
empirical gains and practical utility for rapid deployment of safe, human-centric Al in new
environments. In sum, Raphael provides a concrete path toward scalable 3D data generation,
annotation, and domain adaptation in complex real-world settings.
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