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Abstract

We present MS-GAGA (Metric-Selective Guided Adversarial Generation Attack), a
two-stage framework for crafting transferable and visually imperceptible adversarial ex-
amples against deepfake detectors in black-box settings. In Stage 1, a dual-stream attack
module generates adversarial candidates: MNTD-PGD applies enhanced gradient calcu-
lations optimized for small perturbation budgets, while SG-PGD focuses perturbations
on visually salient regions. This complementary design expands the adversarial search
space and improves transferability across unseen models. In Stage 2, a metric-aware se-
lection module evaluates candidates based on both their success against black-box mod-
els and their structural similarity (SSIM) to the original image. By jointly optimizing
transferability and imperceptibility, MS-GAGA achieves up to 27% higher misclassifi-
cation rates on unseen detectors compared to state-of-the-art attacks.

1 Introduction

1.1 Background and Motivation

Rapid advances in artificial intelligence, particularly deep learning, have facilitated the cre-
ation of synthetic media known as "deepfakes". Modern deepfakes are often generated using
sophisticated diffusion-based models [19, 39] which iteratively refine synthetic media until
it is virtually indistinguishable from authentic content. The quality of these generated im-
ages and videos has reached a level where they are highly realistic and difficult to distinguish
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from real face images, blurring the line between reality and fabrication [7, 25]. This has pre-
cipitated a host of severe societal and ethical challenges. Deepfakes have been weaponized
to erode public trust, spread disinformation in political contexts, violate personal privacy
through non-consensual content, and perpetrate widespread fraud [26].

In response to these growing threats, the development of accurate and reliable deepfake
detection algorithms has become a critical and urgent challenge for researchers, policymak-
ers, and industry stakeholders alike. Recent years have witnessed the emergence of a diverse
range of detection approaches, broadly categorized into spatial, temporal, and adversari-
ally robust methods. Spatial-domain methods, such as the XceptionNet-based detector [40]
in the FaceForensics++ benchmark, leverage convolutional architectures to capture subtle
pixel-level inconsistencies introduced during generation. Transformer-based models, includ-
ing Vision Transformer (ViT) variants such as the Patch Transformer [15, 46] for Deepfake
Detection, extend this capability by modeling global dependencies to identify manipulation
artifacts. Temporal-domain approaches exploit frame-to-frame inconsistencies, with sys-
tems like Lip Forensics Detector (LFD) [16] analyzing lip-sync discrepancies, while multi-
attentional video transformers detect temporal flicker and jitter patterns using cross-frame
attention.

Despite the promising performance of deepfake detectors under normal conditions, a new
and formidable challenge has emerged in the form of adversarial attacks [43]. In the context
of deepfake detection, these attacks are designed to cause a detector, which would normally
classify a synthetic image as "fake," to misclassify it as "real". This poses a significant
threat to the reliability and effectiveness of deepfake detection systems, as it fundamentally
undermines their ability to distinguish between genuine and manipulated content. The nature
of these attacks represents a critical evolution in the threat landscape. Adversarial attacks
do not rely on high-level, human-perceptible artifacts. Instead, they exploit the low-level
vulnerabilities of the underlying neural network architecture itself [20, 31]. Recent work
[32] has further shown that even pretrained face verification models, despite their strong
identity representation capabilities, face challenges in reliably distinguishing genuine from
manipulated identities. This signifies a far more sophisticated and difficult-to-counter threat.

This research is motivated by the critical need to understand the vulnerabilities of deep-
fake detection systems to adversarial attacks. Proactively developing and analyzing these
attacks is a defensive strategy known as "red teaming" [42]. By intentionally exposing the
weaknesses of existing detection models, researchers can devise more robust and resilient
defences. The ultimate goal is to strengthen the deepfake detection algorithms’ resistance to
adversarial attacks and ensure the continued efficacy of media authentication systems. The
study of adversarial attacks has a direct, practical application in developing countermeasures.
Defense mechanisms such as adversarial training [14], which involves exposing a model to
adversarial examples during its training phase, have been shown to significantly enhance
a model’s robustness. This work aims to advance this field by creating a more realistic and
powerful form of attack, thereby pushing the boundaries of what constitutes a robust defense.
A significant portion of existing research on adversarial attacks against deepfake detectors
has focused on the unrealistic "white-box" threat model [23, 24, 28], where the attacker has
complete knowledge of the detector’s architecture and parameters. While effective at demon-
strating vulnerability, this approach does not represent the real-world scenario of a malicious
actor facing a deployed "black-box" model. This creates a critical gap in the literature, which
this research is designed to address. The focus on black-box attacks is thus a necessary step
to produce solutions that are not just academically interesting but also practically relevant to
securing Al systems in the real world.
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1.2 Problem Statement

The primary objective is to devise and evaluate a novel framework for generating highly
transferable, imperceptible adversarial attacks on deepfake image detection algorithms, specif-
ically targeting the more realistic black-box threat model. This study aims to create attacks
that can successfully evade a wide range of unknown, state-of-the-art detectors without re-
quiring access to their internal architecture or parameters. Our methodology prioritizes max-
imizing the attack’s transferability, thereby providing a robust method for stress-testing the
security and reliability of deepfake detection systems in real-world scenarios.

We propose MS-GAGA 3, a dual-stream adversarial framework for attacking black-box
deepfake detectors. Our key contributions are two-fold:

1. We introduce a novel dual-stream attack strategy that fuses diverse perturbation mech-
anisms, one driven by adaptive MNTD-PGD 3.1.1 optimization and the other guided
by visual saliency SG-PGD 3.1.2, to expand the adversarial search space and improve
robustness across models and content types.

2. We develop a metric-aware selection module that jointly considers black-box misclas-
sification success (as a proxy for transferability) and perceptual similarity (via SSIM
[47]), enabling dynamic, high-fidelity adversarial image selection tailored for varying
input conditions.

2 Related Work

2.1 Deepfake Detection Systems

Early advances in deepfake detection relied heavily on convolutional neural networks (CNNGs),
exemplified by the FaceForensics++ benchmark and its Xception-based classifier [40]. Such
models exploit local texture artifacts and blending inconsistencies but tend to overfit to
dataset-specific characteristics, leading to sharp performance drops in cross-dataset settings.

Frequency-domain methods, such as F3-Net [36], have sought to capture GAN-specific
spectral patterns, offering improved robustness over RGB-only models. However, these ap-
proaches can be undermined by compression, post-processing, or novel generative architec-
tures like diffusion models.

Region-specific detection approaches have been explored by [3]. For instance, trans-
fer learning has been leveraged to adapt detectors toward specific facial regions, improving
sensitivity to localized manipulations. [13] empirically demonstrated that emotional expres-
sions significantly impact facial recognition performance across diverse datasets, highlight-
ing the importance of human-centric variability when defending against deepfake manipula-
tions. Physiological prior—based detectors, such as DeepRhythm [35], leverage subtle cues
like remote photoplethysmography (rPPG) to detect manipulation. While effective in high-
resolution, controlled and region-specific settings, they degrade under occlusion, variable
lighting, or low resolution, and their applicability to still images remains limited.

Transformer-based and foundation model approaches (e.g., Swin Transformer hybrids
[30] or CLIP-adapted detectors [38]) have demonstrated stronger generalization to in-the-
wild forgeries by modeling global context and high-level semantics. Nonetheless, these
architectures are data-hungry, computationally expensive, and still vulnerable to unseen gen-
eration pipelines.
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Diffusion-aware methods, such as DiffusionFake [6], reconstruct the input image using
a frozen generative prior and detect inconsistencies between the original and reconstruction.
While they excel at detecting manipulations from similar generative families, their reliance
on prior-specific features limits performance against entirely novel architectures.

Finally, forensic approaches, including EXIF metadata consistency [22] and sensor pat-
tern noise analysis (Noiseprint/PRNU) [8], provide interpretable detection cues but are brittle
to common online transformations such as resizing, compression, and content re-hosting.

2.2 Adversarial Attacks on Deepfake Detectors

Taxonomy. Adversarial attacks are commonly classified by the attacker’s level of knowl-
edge about the target model:

* White-Box Attacks: The attacker has full access to the target model’s architecture,
parameters, and gradients, enabling the creation of highly effective perturbations.

* Black-Box Attacks: The attacker has no internal knowledge of the model and can
only query it for predictions, often exploiting transferability from a surrogate model.

* Gray-Box Attacks: The attacker has partial knowledge, such as the architecture but
not the parameters.

Formally, the attacker seeks a perturbed input x“¢"

it, with § = (x*" — x) remaining imperceptible:

such that a classifier f misclassifies

adv)

argmin L[f(x*),y] st [ x|, <e (1)

xadv

where € controls perceptibility under an L, norm.

Recent Advances and Limitations. Despite improvements in accuracy, deepfake detec-
tion systems remain susceptible to adversarial perturbations. Carlini and Farid [4] showed
that imperceptible pixel-level noise can cause significant misclassification rates in state-of-
the-art detectors, exploiting their over-reliance on high-frequency cues—making frequency-
domain methods particularly vulnerable. Recent work such as AdvForensics [31] has pro-
posed transferable perturbations across multiple detectors, raising concerns about model-
agnostic vulnerabilities. Adaptive attacks that jointly optimize against multiple architec-
tures [27] can bypass ensemble-based systems, once believed to be more robust. Beyond
pixel-level perturbations, semantic adversarial attacks alter high-level image attributes such
as lighting, pose, or background while maintaining visual plausibility [37]. These exploit
distributional shifts rather than low-level noise vulnerabilities, impacting both CNN- and
transformer-based detectors.

Nonetheless, adversarial methods face constraints. Many require white-box access, which
is unrealistic in deployed systems. Transfer-based black-box attacks often degrade under
compression or social media re-encoding, which remove or distort perturbations [11]. More-
over, adversarial training can improve robustness but frequently reduces clean-sample accu-
racy, making it a trade-off in practical detection systems [49]. These concerns extend beyond
academic benchmarks. Face recognition and generative Al pipelines are already being em-
bedded in real-world applications such as personalized guest services in the hospitality sector
[18], making adversarial robustness a pressing requirement.
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Figure 1: MS-GAGA framework with dual-stream attack module and a selection module.

3 Proposed Methodology

As shown in Figure 1, MS-GAGA is a two-stage framework for generating transferable and
imperceptible adversarial examples against black-box deepfake detectors. Stage 1 creates
adversarial images with MNTD-PGD and SG-PGD, while Stage 2 selects the optimal image
based on black-box misclassification and SSIM.

3.1 Stage 1: Dual-stream Attack Module

To enhance both adversarial transferability and perceptual imperceptibility, MS-GAGA in-
troduces a dual-stream adversarial generation module. Given an input Al-generated fake
image x € R?*W*C_ the objective is to craft an adversarial counterpart x*%V that maintains
high visual similarity to x while successfully misleading multiple black-box deepfake detec-
tors. This stage generates two adversarial candidates by leveraging complementary strategies
aimed at (1) maximizing transferability across unseen models and (2) preserving the struc-
tural integrity of the original image.

3.1.1 Momentum-Nesterov-Translation-Diversity PGD (MNTD-PGD)

The first stream extends the standard PGD framework with a suite of robust optimization
strategies: (1) Momentum Iterative (M) [9] accumulates past gradients to stabilize updates
and escape local minima, (2) Nesterov Accelerated Gradient (N) [29] with a look-ahead
step to refine gradient directionality, (3) Translation Invariance (T) [10] applies Gaussian
smoothing to improve robustness to spatial shifts, and (4) Input Diversity (D) [48] random-
izes input size and padding at each iteration to prevent overfitting to specific surrogate models
and boosting attack generalization across architectures. Given an Al-generated fake image
x € RT*WXC and a deepfake detecting surrogate ensemble D = {mi}é‘:l, the adversarial

example x*" is generated through iterative updates as follows:
x4 = x4 o - sign(g,) (2)
1 d adv
&G =M1 g1+ % Z Vxﬁtotal(mi(xt )a)’) 3)
i=1

where g, is the momentum-accumulated gradient at iteration ¢, ( is the momentum decay
factor, and « is the step size.


Citation
Citation
{Dong, Liao, Pang, Su, Zhu, Hu, and Li} 2018

Citation
Citation
{Lin, Song, He, Wang, and Hopcroft} 2019

Citation
Citation
{Dong, Pang, Su, and Zhu} 2019

Citation
Citation
{Xie, Zhang, Zhou, Bai, Wang, Ren, and Yuille} 2019


6 HO ET AL.: METRIC-SELECTIVE GUIDED ADVERSARIAL GENERATION ATTACK

We also incorporate an SSIM-regularized [47] loss Lgspv into our MNTD-PGD frame-
work, directly optimizing for high visual similarity between original and adversarial images.
Unlike traditional methods that only limit pixel changes, this approach explicitly shapes per-
turbations to be imperceptible. Agspy is a regularization term tuned to 0.3. The total loss is
defined as Etotal = Emisclassiﬁcation + ESSIM-

ESSIM = AISSIM : (10 - SSIM(X,XadV)) (4)

Additionally, we employ several novel optimizations:

* Adaptive Per-Surrogate Weighting (APW): Instead of treating all surrogate models
equally, APW dynamically assigns higher weights to those that are harder to fool or
more confident in their predictions. This strategic allocation of gradient contribution
focuses optimization on the most challenging surrogates, leading to more effective
and transferable adversarial examples. By learning which models provide the most
informative gradients, APW introduces a meta-optimization layer that enables more
intelligent, resource-aware attack strategies.

 Epsilon Search: The standard, fixed-epsilon perturbations are replaced by an intelli-
gent epsilon search to find the minimal perturbation needed for a successful attack. It
starts with a coarse grid search, followed by binary search refinement between the last
failed and first successful values. This process minimizes perturbations and inherently
improves SSIM. In addition, the epsilon grid is scaled with the pixel variance of the
image - a higher variance allows for larger epsilons.

* Preprocessing: For each image, we adjust contrast, brightness, and add Perlin noise
[34] to create more "natural” looking final images. This was key to achieving a mis-
classification rate of 99% on our target models.

3.1.2 Saliency-Guided PGD (SG-PGD)

To maximise the attack budget (€), we made use of saliency maps [41] to identify and target
the most influential pixels in an image. Given an Al-generated fake image x € R¥*W*C and
a surrogate model m € D, we first compute a saliency map by taking the gradient of the loss
function £ with respect to the input image, Myajiency = |Vx£L(m(x),y)|. This mask isolates
the most important regions, and the adversarial perturbation is subsequently multiplied by it.
The update rule for creating the adversarial image, x“?" at each step is modified to:

XA = X 1 ot sign (VL (m(x), ) © Maatency ©)

Here, « is the step size and © represents element-wise multiplication.

3.2 Stage 2: Selection Module

While Stage 1 generates two adversarial candidates (X441, pcp and x24¥ , ), not all pertur-
bations are equally effective or perceptually similar. Simply choosing one arbitrarily risks
sacrificing either transferability or imperceptibility. To address this, we design a metric-
aware Selection Module that evaluates each candidate according to both (i) its success in
fooling black-box detectors and (ii) its structural similarity to the original image.

Formally, given a set of classifiers C € C and an input batch of Njjqges samples, we com-
pute a joint score that multiplies attack success with perceptual quality. For each adversarial
image x‘,jd", the Structural Similarity Index (SSIM) between the original x; and xzd" serves
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as a proxy for visual fidelity, while the classification outcome provides a binary measure of
attack success. The cumulative score is defined as:

N, images

_ adv adv _
score = . Z Z SSIM (xk,xk ) (C (xk >1abel = Real) (6)
cClassifiers k=1

Oorl

where adversarial examples are rewarded only when they are both successful (fool the classi-
fier) and imperceptible (high SSIM). Finally, the Selection Module compares the two streams
and retains the candidate with the higher score:

x4l = arg max (scoreynTp-PGD, SCOTESG-PGD) - 0

By coupling perceptual similarity with misclassification success, the Selection Module en-
forces a balance between transferability and visual fidelity.

4 Experiments

Test Set. We use the test set provided by the AADD Challenge: ACM Multimedia 2025
[2] to validate our attack strategy. The dataset contains 693 high-quality (HQ) and 710 low-
quality (LQ) deepfake images generated using the models in Table 1. A typical deepfake
image is a human portrait with varied expressions and complex backgrounds. The number
of images generated by GAN and Diffusion Models is numerically balanced. The LQ im-
ages are created by resizing followed by variable Quality Factor (QF) compression. This
combination is designed to simulate social media compression.

Figure 2: Top: Low-quality deepfakes; Bottom: High-quality deepfakes.

Quality | Deepfake Generators

HQ Adobe Firefly, DeepAl, Flux 1.1 Pro, HotPotAl, Nvidia SanaPAG, Sta-
ble Diffusion 3.5, StyleGAN 2, StyleGAN 3, Tencent Hunyuan
LQ DeepAl, Flux.1, Freepik, HotPotAl, Nvidia SanaPAG, Stable Diffusion

Attend and Excite, StyleGAN, StyleGAN 3, Tencent Hunyuan

Table 1: Deepfake generators used to create the test set.
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Target and Surrogate Models. We used two target models, ResNet-50 [17] and DenseNet-
121 [21], each configured as a binary classifier for deepfake detection in a black-box setting.
In each experiment, one model served as the target while the other acted as a surrogate. To
further increase architectural diversity, improve transferability, and reduce overfitting, we
incorporated two additional surrogate models, EfficientNet-BO [45] and Inception-v3 [44],
as robust deepfake detectors.

Baselines. We compare MS-GAGA against the Carlini & Wagner L., attack [5] (white-
box) and the Square Attack [1] (black-box), both implemented via the Adversarial Robust-
ness Toolbox (ART) [33]. While more advanced black-box attacks such as GRAPHITE [12]
exist, they are computationally intensive (require days of runtime compared to the hours
needed for the other methods), thereby not offering a practical or fair comparison.
All attack strategies are evaluated using the following metrics:
* Misclassification Rate: Number of times an adversarial deepfake image successfully
fools the target deepfake detector.
¢ SSIM: Computed using skimage.metrics.structural_similarity with
default window size=7 on each RGB channel.

5 Results

Original | MS-GAGA | Square Attack | Carlini-Wagner |

SSIM: 1.0 SSIM: 0.83 SSIM: 0.78 SSIM: 0.86

SSIM: 0.95 SSIM: NA SSIM: 0.93

SSIM: 1.0 SSIM: 0.27 SSIM: NA SSIM: NA

Table 2: Comparison of generated adversarial deepfake images. An SSIM of “NA" indicates
that the perturbed image failed to fool the classifier. In the first and third rows, MS-GAGA
images have 0.8x contrast of the original.

Quantitative Analysis. Table 2 and 3 detail our experimental results. MS-GAGA achieves
a 27% higher misclassification rate than the other methods in all scenarios. However, it
comes at the cost of lower SSIM. To weigh the trade-offs, we calculate the score on the
entire test set using (6), which shows that MS-GAGA still achieves better results overall.


Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Huang, Liu, van~der Maaten, and Weinberger} 2017

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

Citation
Citation
{Carlini and Wagner} 2016

Citation
Citation
{Andriushchenko, Croce, Flammarion, and Hein} 2019

Citation
Citation
{Nicolae, Sinn, Tran, Buesser, Rawat, Wistuba, Zantedeschi, Baracaldo, Chen, Ludwig, Molloy, and Edwards} 2018

Citation
Citation
{Feng, Mangaokar, Chen, Fernandes, Jha, and Prakash} 2022


HO ET AL.: METRIC-SELECTIVE GUIDED ADVERSARIAL GENERATION ATTACK 9

Misclassification Rate (%)

Method Avg. SSIM  Score
ResNet-50  DenseNet-121

No Attack 0 0 100 0

Square Attack [1] 56.3 56.6 73.4 1163

Carlini-Wagner Attack [5] 73.7 71.0 91.3 1855

MS-GAGA (Ours) 99.6 98.8 69.0 1921

Table 3: Performance comparison of various attacks

The adversarial images generated by MS-GAGA are transferable, at least between the
similar architectures of ResNet-50 and DenseNet-121. In contrast, the Carlini-Wagner attack
tends to overfit the surrogate model, thereby lacking transferability. Additionally, the Square
attack is innately less powerful than gradient-based methods.

Ablation Study. To better understand the contribution of each stream in MS-GAGA, we
conduct an ablation study where MNTD-PGD and SG-PGD are evaluated independently.
Table 4 reports their quantitative performance, while Figure 3 provides visual examples of
the resulting adversarial perturbations at different SSIM ranges.

Misclassification Rate (%)

Method Avg. SSIM  Score
ResNet-50 DenseNet-121

MNTD-PGD 3.1.1 98.2 97.6 67.5 1854

SG-PGD 3.1.2 43.8 35.1 82.1 909

Table 4: MNTD-PGD provides transferability, SG-PGD aids higher structural similarity.

Sk RSO0

Flgure 3: Top: MNTD-PGD (SSIM € [0.8 — 0.9]); Bottom: SG- PGD (SSIM €10.9-0.1))

6 Conclusion

We introduce MS-GAGA, a two-stage adversarial framework designed to generate highly
transferable attacks against black-box deepfake detectors. The results highlight significant
vulnerabilities in current deepfake detection pipelines, demonstrating the need for more re-
silient defences. While this study successfully moves beyond single-surrogate and white-box
limitations, it is confined to CNN-based models and static image datasets. Future work will
extend this framework to additional deepfake models and modalities and will evaluate its
effectiveness against varied detector architectures, such as transformer-based and frequency-
domain models, to provide a more comprehensive understanding of its generalizability. This
research provides a critical step toward safeguarding digital media integrity by offering a
rigorous method to evaluate and strengthen detection systems.
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