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Abstract

Face morphing attacks present a significant challenge to biometric authentication sys-
tems by allowing multiple individuals to share a single identity. While much existing
research has focused on detecting morphs between unrelated individuals, a critical gap
remains in understanding morphs generated from genetically related subjects, such as
parents and children. These kinship-based morphs closely mimic natural familial re-
semblance, making them difficult to detect using conventional approaches. This work
explores the problem of kinship-based morphing by introducing a large-scale synthetic
dataset generated using both Open-CV and latent autoencoder-based techniques across
various blending ratios. A hybrid detection framework is proposed that leverages identity
features extracted from both FaceNet and ResNet50, aiming to capture nuanced facial in-
consistencies that may arise in morphs with substantial familial overlap. The study also
considers performance across multiple morphing ratios and investigates generalization
under unseen synthetic conditions. Additionally, a face recognition experiment is per-
formed across different morph ratios to reflect how the recognition score varies as the
morph ratio varies. This research opens new directions for improving the robustness of
morph detection systems in the context of realistic kinship-based attacks.

1 Introduction

Face morphing attacks present a significant security risk to biometric authentication systems
by enabling multiple individuals to impersonate a single identity. Although existing research
primarily addresses morphs generated from unrelated individuals, the detection of kinship-
based morphs, particularly parent-child morphs, remains largely underexplored. Due to in-
herent facial similarities, these morphs closely resemble genuine familial images, effectively
concealing morphing artifacts and increasing the likelihood of false acceptances. This subtle
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challenge poses a critical threat to the reliability of biometric systems in practical deploy-
ments. To address this gap, a large-scale synthetic kinship-based morph dataset is con-
structed using OpenCV-based and autoencoder-based techniques across multiple blending
ratios to simulate a range of attack strengths and realism levels. A proposed hybrid de-
tection framework combines embeddings from FaceNet [19], and ResNet50 [7], leveraging
their complementary strengths to capture low-level facial texture anomalies and high-level
identity inconsistencies. The framework undergoes evaluation across various morphing ra-
tios and is further tested for its cross-ratio generalization capability to assess robustness in
unseen blending conditions. This work provides new insights into the limitations of tra-
ditional morph detection approaches in familial resemblance. It highlights the importance
of incorporating synthetic kin-based data into detection pipelines to improve the reliabil-
ity and generalizability of biometric verification systems. Major contributions of this work
are as follows: @ A large-scale synthetic kinship-based morphed dataset is constructed us-
ing OpenCV and autoencoder techniques with varying blending ratios to simulate realistic
parent-child morphing attacks, # A hybrid morph detection framework is proposed by com-
bining FaceNet and ResNet50 embeddings to capture complementary facial identity cues and
morphing artifacts, * Comprehensive intra-ratio and cross-ratio evaluation is performed to
analyze performance across morphing strengths and assess generalization to unseen ratios,
% Face recognition uses varying morph ratio images to reflect the morphing needed to fool
the state-of-the-art face recognition networks, and > The study provides empirical evidence
that kin-based morphs are significantly more complex to detect than general morphs due to
natural familial resemblance.

2 Related Work

Face morphing attacks enable multiple individuals to be authenticated under a single iden-
tity, presenting a significant vulnerability to biometric authentication systems. These attacks
rely on synthetically blending the facial features of two subjects, creating hybrid identities
that remain visually plausible and often evade detection by face recognition models. While
substantial progress is made in general-purpose morph detection [16, 21], kinship-based
morphs remain largely overlooked. Kinship-based morphing introduces a unique challenge,
as parent-child facial similarities naturally exist due to shared genetic traits, which reduce
distinguishable morph artifacts and hinder the efficacy of traditional detection methods.
Kinship verification explores biological relationships such as parent-child and sibling
connections, with practical applications in immigration screening, forensic analysis, and
familial photo organization [4, 23]. Conventional kinship verification utilizes either hand-
crafted features or deep learning-based representations. However, kinship-based morphs
introduce synthetically blended faces that closely resemble both contributors, making it dif-
ficult to differentiate legitimate biological resemblance from manipulated imagery. In these
scenarios, biometric verification systems become more vulnerable to high false acceptance
rates, particularly in security-critical environments such as border control and law enforce-
ment [21, 24]. Early approaches to morph detection rely on handcrafted features, includ-
ing Local Binary Patterns (LBP) [12], Binarized Statistical Image Features (BSIF) [8], and
frequency-domain analysis through Fourier transform [17, 21]. While effective for detecting
basic morphs, these methods struggle against synthetically generated morphs with fewer ar-
tifacts and better-blending fidelity. Deep learning approaches using CNNs such as ResNet50
[7] capture spatial texture inconsistencies, and Vision Transformers (ViTs) [5] employ self-
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Figure 1: Proposed kinship morph generation and detection architecture.

attention to detect subtle distortions [1]. Despite their effectiveness, ViTs often require large-
scale annotated datasets and high computational resources. Hybrid techniques emerge, fus-
ing handcrafted and learned features to balance interpretability and performance. Multi-level
and multi-modal fusion strategies combine local texture descriptors like Histogram of Ori-
ented Gradients (HoG) with deep identity embeddings, improving morph detection accuracy
across varying datasets [16, 18, 22].

MagNet [1] introduces the Weighted Local Magnitude Pattern (WLMP), which captures
imperceptible local distortions in synthetic images more effectively than traditional descrip-
tors. Other works integrate embeddings from networks like AlexNet [10] and ResNet50
[7], leveraging low-level and high-level representations for robust classification. MADation
[3] presents the first adaptation of foundation models to morphing attack detection by fine-
tuning CLIP with LoRA and a classification head, achieving state-of-the-art performance
across diverse evaluation scenarios while maintaining generalization capabilities. Despite
these advancements, morph detection between genetically related individuals remains an
open problem, as natural similarity reduces the contrast between real and synthetic samples.
To mitigate these limitations, the proposed work focuses on kinship-aware synthetic morph
detection using a hybrid approach that combines FaceNet for identity-aware embeddings and
ResNet50 for texture-aware representations. These complementary features are fused and
classified using an SVM to evaluate robustness across morphing ratios and kinship-specific
attack scenarios.

3 Proposed Kinship Face Morph Dataset

The morphed dataset used in this work is derived from the TSKinFace dataset [13], a widely
adopted benchmark for kinship verification tasks. TSKinFace includes images of biolog-
ically related individuals grouped into father (F), mother (M), son (S), and daughter (D)
categories, captured in controlled conditions to maintain consistency in pose, illumination,
and background. Using classical morphing techniques, kinship-based morphed samples are
generated by synthetically blending facial images of parent-child pairs from the same family.
The combinations used include father-daughter, mother-daughter, father-son, and mother-son
pairs. The morphing process primarily utilizes OpenCV and Dlib. It begins with facial land-
mark detection using DIib’s 68-point landmark detector, which is used for facial alignment.
This is followed by geometric warping and feature blending through OpenCV’s morphing
tools, ensuring structural consistency in the resulting morphed images. Morphs are generated
at five different blending ratios 90-10, 80-20, 70-30, 60-40, and 50-50, where, for example,
a 90-10 blend contains 90% of the child and 10% of the parent’s features. Lower-ratio
morphs tend to preserve the child’s appearance, making detection more difficult, whereas
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higher-ratio blends introduce more visible artifacts, making detection comparatively easier.
The dataset comprises 5,176 images, with 2,588 authentic (real) and 2,588 morphed samples
across each ratio. In addition to traditional OpenCV-based morphs, a new autoencoder-based
kinship morphing dataset is generated using stable variational-autoencoder (Stability-VAE)
[15]. This VAE encodes high-resolution images into a compressed latent representation.
Morphs are generated by linear interpolating latent vectors with a weighted average of 0.9,
followed by decoding into image space.

The autoencoder-based dataset contains 2,030 images for each ratio and mirrors the
same morphing ratio splits (90-10 through 50-50) to enable consistent and fair compari-
son with classical morphs. To understand the increased difficulty of detecting kinship-based
morphs, we compare our TSKinFace-based morph detection results against general-purpose
morph detection performance on the FRLL-Morphs dataset [18]. FRLL-Morphs include
high-quality frontal morphs generated using multiple algorithms such as OpenCV warping,
FaceMorpher, WebMorpher, and StyleGAN, but without kinship relations between source
subjects. Our evaluation reveals that kinship-based morph detection is substantially more
rigid due to the inherent facial similarity between related individuals, which reduces the pres-
ence of detectable artifacts. Overall, the proposed dataset offers a rich and diverse benchmark
for kinship-aware morph detection, featuring: @ A novel kinship-based morphed dataset
derived from TSKinFace includes 2588 real, 2,588 OpenCV-based, and 2,030 autoencoder-
based morph images for each of five morphing ratios (90-10 to 50-50), @ Introduction of
autoencoder-based morphs using Stability-VAE, providing highly realistic kinship morphs
with minimal artifacts, ® Direct comparison with the FRLL-Morphs dataset to demonstrate
the increased challenge of kinship morph detection over general morph detection, and @
Comprehensive morph generation pipeline using traditional warping and latent-space inter-
polation for broader attack diversity.

4 Proposed Face Morph Detection Algorithm

The proposed morph detection algorithm adopts a hybrid feature extraction strategy by inte-
grating identity-aware and texture-focused representations, as shown in Figure 1. FaceNet,
specifically the InceptionResnetV1 architecture pre-trained on the VGGFace2 dataset, ex-
tracts 128-dimensional embeddings optimized for identity verification. These embeddings
capture critical facial features typically shared in morphed images, often blending identity
traits between two individuals. Simultaneously, ResNet50, pre-trained on the ImageNet
dataset, extracts 2048-dimensional deep features from the final convolutional layer, effec-
tively capturing local texture artifacts and blending inconsistencies introduced during the
morphing process. We combine the identity-focused embeddings from FaceNet with the
texture-sensitive features extracted by ResNet50 into a single 2,176-dimensional vector. This
fusion of FaceNet’s identity-discriminative representation and ResNet50’s artifact-sensitive
descriptors yields complementary information that enhances our ability to detect subtle mor-
phing artifacts. This comprehensive feature vector is fed into a Support Vector Machine
(SVM) classifier with a radial basis function (RBF) kernel, which is well-suited for high-
dimensional, nonlinear classification tasks. The SVM model is trained on a balanced set
of real and morphed samples using SMOTE for oversampling and undersampling for test
balancing, with stratified 3-fold cross-validation applied to ensure performance stability and
generalizability. This hybrid model effectively captures global semantic and localized visual
cues essential for accurate morph detection, forming the core of our proposed approach.


Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022

Citation
Citation
{Scherhag, Rathgeb, Merkle, and Busch} 2020


SRIVASTAV, BHATTACHARYA, AGARWAL, RATHA: KINSHIP MORPHING 5

Table 1: Morphing detection performance across different models on 90-10 ratio.

Models Accuracy (1) | MACER (|) | BSCER (}) | D-EER(])
MagNet [1] 57.51 43.20 36.54 39.87
FaceNet + MLP 71.48 39.00 18.08 28.54
AlexNet + ResNet + SRKDA [22] 74.13 13.16 43.93 28.55
FaceNet + ECA + SVM 71.00 28.41 28.31 28.36
ResNet + SVM 73.64 27.90 27.00 27.50
ResNet (fine-tuned) on unseen data 68.64 34.42 27.64 31.03
FaceNet + MLP (Optuna Tuned) 74.18 3591 15.77 25.84
FaceNet + SVM [6] 75.43 36.49 12.69 24.59
FaceNet + HoG + Fourier Transform + SVM 76.40 34.36 12.88 23.62
CLIP (ViT) + SVM 76.89 33.42 14.21 23.12
CNN + ECA [11] 77.41 32.18 13.46 22.59
FaceNet + ViT-b/16 + SVM 77.78 32.26 12.17 22.22
AdaFace + SVM 64.65 35.96 35.78 35.87
AdaFace + ResNet + SVM 76.81 21.51 21.49 21.50
AdaFace + ViT-b/16 + SVM 76.41 21.46 21.38 21.42
FaceNet + ResNet + SVM (Proposed) 78.83 30.33 12.02 21.17

5 Experimental Results and Analysis

To rigorously assess the effectiveness of the proposed hybrid morph detection model, we
evaluate its performance using a range of experiments under diverse conditions. The evalu-
ation is conducted using four widely accepted metrics: Accuracy, which measures the pro-
portion of correctly classified samples; Morphing attack classification error rate (MACER),
indicating the proportion of morphed samples incorrectly classified as bona fide samples
in a specific scenario; Bona Fide Sample Classification Error Rate (BSCER), representing
proportion of bona fide samples incorrectly classified as morphed samples in a particular
scenario; and Detection Equal Error Rate (D-EER), which captures the trade-off point where
MACER equals BSCER, serving as a balanced error indicator for biometric systems.

5.1 Comparison with Existing Models

Table 1 presents a comprehensive comparative analysis conducted to evaluate the effective-
ness of the proposed hybrid morph detection model against several existing and baseline
approaches. The first baseline is the FaceNet + SVM model [6], which leverages 128-
dimensional identity embeddings from FaceNet and uses an SVM for classification. This
setup is extended in multiple directions. A Multi-Layer Perceptron (MLP), both in its stan-
dard form and optimized using Optuna [2], is evaluated to model complex non-linear re-
lationships in the feature space. A hybrid FaceNet + ViT-CLIP + SVM model is explored,
where the ViT-based CLIP encoder [14] provides high-level semantic embeddings fused with
FaceNet representations and classified using an SVM. Additionally, a standalone CLIP (ViT-
B/16) + SVM configuration is evaluated, utilizing CLIP’s vision encoder to extract global
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Figure 2: The morphed faces are created using an autoencoder and OpenCV. In each case, a
parent is blended with their child to produce realistic, child-like morphed images.

visual features, followed by SVM classification. While CLIP is not explicitly designed for
morph detection, its strong generalization helps distinguish between authentic (real) and
morphed images. Another strong baseline is the AlexNet + ResNet50 + SRKDA model
[22], which performs multilevel deep feature fusion and applies Spectral Regression Kernel
Discriminant Analysis (SRKDA) for improved class separability. We also include attention-
driven models such as Patch CNN + Efficient Channel Attention (ECA) [11], where local
facial patches are processed to capture fine-grained morphing artifacts, and ECA modules
enhance facial regions through channel-wise attention. The integration of FaceNet embed-
dings with ECA-based attention (FaceNet + ECA + SVM) is also examined to assess the
fusion of local attention and identity-aware features.

Furthermore, we assess handcrafted and anomaly-based methods. MagNet [1] applies
a reconstruction-based anomaly detection strategy, flagging morphed samples as out-of-
distribution inputs based on reconstruction loss. A handcrafted fusion method combining
FaceNet, Histogram of Oriented Gradients (HoG), and Fourier transform with SVM classi-
fication is evaluated to exploit spatial and frequency domain characteristics. AdaFace [9],
a face recognition model with adaptive margin learning, is used in multiple configurations,
including AdaFace + SVM, AdaFace + ResNet + SVM, and AdaFace + ViT + SVM, to eval-
uate the adaptability of identity-aware embeddings to morph detection. We also investigate
a fine-tuned ResNet model trained end-to-end on unseen kin-based data to benchmark the
generalization capacity of single-model deep learning approaches.

Additionally, we study the robustness of our proposed hybrid FaceNet + ResNet + SVM
model when augmented with Gaussian noise during testing to simulate real-world degrada-
tions. Under Gaussian noise (mean=0, standard deviation=10), the hybrid model achieves
77.68 % accuracy (slightly down from 78.83 %) and 21.95 % D-EER (up from 21.17 %),
compared to Patch-CNN + ECA and FaceNet + ViT + SVM. These results demonstrate
the hybrid model’s superior robustness and make it a reliable choice for noisy, real-world
biometric verification. Across all experiments, the proposed hybrid model consistently
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Table 2: Performance of the proposed hybrid morph detection model across different morph
ratios and cross-ratio configurations.

Detection across ratios Cross ratio generalization (D-EER %)
Morph Ratio | Accuracy | MACER | BSCER | D-EER | 90-10 | 80-20 | 70-30 | 60-40 | 50-50
90-10 78.83 30.33 12.02 21.17 | 21.17 | 18.62 | 12.68 | 9.94 8.22
80-20 85.22 19.13 10.43 14.78 18.36 | 14.78 | 10.12 | 9.16 8.24
70-30 92.08 8.93 6.92 7.92 15.08 | 1298 | 7.92 | 10.84 | 9.52
60-40 95.38 4.68 448 4.58 17.68 | 15.24 | 12.84 | 4.58 | 11.08
50-50 95.40 448 4.71 4.60 20.66 | 18.50 | 15.12 | 12.08 | 4.60

demonstrates superior performance in morph detection across various morphing techniques
and datasets. Combining identity-sensitive and texture-focused features and classifying
them with a kernel-based method, the hybrid model outperforms deep learning, handcrafted,
transformer-based, attention-enhanced, and anomaly-based baselines, particularly in chal-
lenging cross-ratio generalization and kin-based scenarios. After the comparison, it is ev-
ident that the proposed hybrid model leads and is closely followed by attention-enhanced
methods like Patch CNN + ECA. Transformer-based CLIP + ViT + SVM underperforms in
this kinship context with a D-EER of 21.17 due to a limited focus on fine-grained identity
cues. Anomaly detection-based methods like MagNet struggle to achieve high precision but
a poor recall with a D-EER of 26.81. At the same time, AdaFace variants (e.g., AdaFace
+ ResNet + SVM) offer moderate results, with D-EERs around 21.50, reflecting their opti-
mization for recognition rather than morph detection.

5.2 Age-Related Bias Examination

Figure 2 presents a series of morphed child faces generated using a variational autoencoder
(VAE) in conjunction with OpenCV. Given that the chronological gap between parent and
child typically ranges from 25 to 30 years, one might worry that age-related artifacts could
simplify distinguishing genuine from morphed children. To address this, we subject both
the original and morphed child images to an age-estimation analysis using the DeepFace
Apparent Age Estimation model [20], the standard VGGFace (VGG-16) face recognition
backbone with a custom convolutional (1x1) head. Across all samples, the mean estimated
age difference between each morphed child and its genuine counterpart is only 2-3 years.
This minimal discrepancy confirms that the morphing pipeline does not introduce signifi-
cant age-related cues; also the improvements in detection accuracy cannot be attributed to
spurious “aging” artifacts.

5.3 Performance Across Morph Ratios

To evaluate the impact of morph complexity, we test the proposed hybrid model (FaceNet +
ResNet50 + SVM) across five morphing ratios: 90-10, 80-20, 70-30, 60-40, and 50-50. In
these ratios, the contribution of the child and parent to the morphed image varies, with 90-10
being the most visually similar to the child and 50-50 being the most evenly blended.
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Table 3: Cross-dataset performance of the hybrid morph detection model trained on general
(FRLL) and kinship (Proposed) datasets.

Test (})\Train (—) FRLL-Morphs Proposed Dataset
Accuracy | D-EER | Accuracy | D-EER
Proposed Dataset 59.89 38.96 78.83 21.17
FRLL-Morphs 82.46 22.54 68.98 24.32
UB KinFace 61.46 34.56 75.88 21.36

As presented in Table 2, the hybrid model’s performance improves significantly as the

morph becomes more balanced. Specifically, at the 90-10 ratio, where the child dominates
the morph and facial artifacts are minimal, the model achieves an accuracy of 78.83% and
a relatively high D-EER of 21.17%. This highlights the difficulty of detecting highly child-
dominant kin morphs due to subtle visual cues. As the parent’s contribution increases, morph
artifacts become more detectable, and performance steadily improves. At the 70-30 ratio, the
model surpasses 92% accuracy and reaches a D-EER of just 7.92%. The performance peaks
at the 50-50 ratio with 95.40% accuracy and an exceptionally low D-EER of 4.60%, demon-
strating the hybrid model’s strength in identifying more evenly blended morphs.
Cross-ratio generalization is another critical real-world scenario where attackers may gen-
erate morphs at varying intensities to evade detection, particularly in low-ratio morphs that
closely resemble genuine facial images. Our experiments demonstrated in Table 2 (last five
columns) show that models trained on subtler morphs, i.e., trained on a 90-10 ratio, perform
relatively better than those trained on ratios like 50-50. This performance disparity arises
due to the visibility and consistency of morphing artifacts. In 50-50 morphs, facial features
from both parent and child contribute equally, leading to prominent blending inconsistencies
such as mismatched texture, symmetry distortion, and unnatural transitions around facial
landmarks. These artifacts are easier for feature extractors and classifiers to learn and de-
tect. In contrast, a 90-10 morph largely preserves the dominant identity (typically the child),
resulting in images that appear nearly identical to genuine ones. The minimal contribution
from the secondary identity introduces only subtle and sparse artifacts, which are harder to
learn and distinguish. As a result, a model trained on 90-10 morphs often generalizes well
when evaluated on more balanced or artifact-rich morphs. Overall, cross-ratio generalization
serves as a comprehensive benchmark for evaluating the resilience of morph detection mod-
els. It ensures that models are not merely overfitting to specific morphing configurations but
can effectively detect morphs created with different blending strengths, thereby enhancing
their practicality for real-world biometric security applications.

5.4 Cross-Dataset Generalization

To assess the generalization ability of morph detection models across different datasets, we
conducted cross-dataset evaluations using the proposed model in Table 3. The model was
trained separately on a general morph dataset (FRLL) and the kinship-based morph dataset
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Figure 3: Three histogram panels in (a), (b), and (c) display the cosine-similarity distri-
butions between each morphed image and its parent, while the line plot in (d) shows the
recognition performance across varying morph ratios. Together, they reveal a clear upward
trend in both cosine similarity and recognition accuracy as the proportion of parental features
in the morphs increases.
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to compare performance across domains. When trained on the FRLL dataset and tested on
the kinship-based morphs, the model achieved a relatively low accuracy of 59.89% with a
high D-EER of 38.96%. This performance degradation can be attributed to the model learn-
ing distinct artifacts from morphs generated using entirely unrelated individuals. As a result,
it struggles to generalize to more challenging cases, such as morphs involving individuals
with close familial resemblance, where the differences are more subtle and less distinguish-
able. In contrast, the model trained on FRLL struggled, achieving only 61.46% accuracy
and a much higher D-EER of 34.56% when tested on UB KinFace. The CNN+ECA model
trained on our proposed kinship-based dataset consistently outperforms the model trained
on general FRLL morphs. This improvement stems from the model’s ability to learn more
complex and closely related features shared between parents and children. By training on
these subtle familial resemblances, the model adopts fine-grained facial variations, which
in turn enhances its generalization performance when applied to standard morph detection
scenarios. When tested on the proposed dataset, it achieves a lower D-EER of 23.08% com-
pared to 36.91% for the FRLL-trained model. On UB KinFace, the proposed-trained model
achieves 22.93% vs. 36.73% on FRLL-Morphs; it records 26.14% compared to 24.18% for
the FRLL-trained model. Results show that kin-trained models generalize to general morphs,
but not vice versa, underscoring the distinct challenges posed by kinship-based morphs due
to their natural facial similarity.

6 Impact of Morph Ratio in Face Matching

To evaluate how much morphed child images resemble their parents, we perform a face
recognition task using morphed images (with blending ratios from 90-10 to 50-50) as probes
and clean parent images as the gallery. We use the pre-trained AdaFace model [9] with
a ResNet-100 backbone and cosine similarity (threshold = 0.5) for matching. As shown
in Figure 3 (a), morphs with only 10% parental features (90-10) consistently score below
the threshold, indicating no identity match and low recognition accuracy. As the parental
contribution increases, similarity scores and recognition rates rise, with 50-50 morphs often
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exceeding the threshold [Figure 3 (b), (c), (d)]. These results suggest that low-contribution
morphs are poor impersonators but harder to detect, while balanced morphs pose a greater
security risk due to their potential for dual identity.

7 Conclusion

This work addresses a critical yet underexplored area in synthetic face analysis—kinship-
based morphing attacks. Unlike conventional morphs or deepfakes generated between unre-
lated individuals, kinship morphs exploit natural familial resemblance, making them partic-
ularly difficult to detect. Higher morphing ratios amplify blending artifacts, improving de-
tection and generalization across ratios. Our hybrid model, combining FaceNet and ResNet
embeddings with a support vector machine classifier, outperforms traditional CNN-based
methods and handcrafted features, establishing a robust baseline for kinship morph detection.
External validation on unseen datasets further supports the generalizability of our approach.
By revealing the vulnerabilities posed by kinship morphs in applications such as passport
verification and identity screening, this study contributes meaningful insights to the syn-
thetic data community. It highlights the need for specialized defenses in biometric systems
exposed to familial manipulation threats. Future directions will aim to enhance detection
performance against low-ratio morphs, which remain challenging due to the dominance of a
single identity and subtle morphing artifacts.
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