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Abstract

Iris recognition is a predominantly used medium for person authentication; however,
it is severely impacted by several presentation attacks. One such stealthy presentation
attack is the use of contact lenses, but the relief is that several research efforts ensure
that these contact lenses can be effectively detected. The prime worry is that it is ob-
served that deep learning-based algorithms are susceptible to image corruption, and iris
presentation attack detection (IPAD) algorithms are not adequately evaluated against im-
age corruption. Therefore, through this research for the first time, we comprehensively
investigate the robustness of IPAD algorithms using several novel input corruptions. The
extensive experiment performed using multiple datasets reveals the sensitivity of state-
of-the-art IPAD algorithms and demands the development of a robust algorithm. It is
demonstrated that blind corruption that does not involve a classifier network, while its
learning and perturbation of a few critical pixels can fool multiple IPAD algorithms. For
example, on the LivDet-17 dataset, the proposed input corruption increases the equal
error rate of ViT from 7.78% to 58.36%.

1 Introduction

Contact lens presentation attack instrument (PAI) is one of the most complex attacks to de-
ceive the iris recognition algorithms [34, 59]. Several IPAD algorithms are proposed in the
literature to tackle it, where the current defenses are heavily biased toward deep neural net-
works [35, 36]. Surprisingly, it is seen that deep neural networks are susceptible to input
modification [37]. Therefore, we assert that developed deep iris presentation attack detec-
tion algorithms must also be adequately evaluated to check whether these algorithms are also
sensitive to input corruptions [38]. The prime reason for such evaluation is that iris systems
are highly deployed for security-related applications, including border control and verifica-
tion of users on restricted devices with online transaction control as well [65]. Therefore,
one can safely assume that deploying non-robust defense algorithms can be dangerous, as it
can lead to the illegal entry of an intruder into the biometrics system, which is now used for
mobile unlocking, border access, and digital payments. Therefore, we have carefully evalu-
ated the sensitivity of state-of-the-art (SOTA) deep iris presentation attack detection (IPAD)
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2 SNEH AND AGARWAL: ROBUSTNESS OF IPAD

algorithms to advance the research in this critical direction and develop robust defense algo-
rithms. Our investigation extends beyond conventional image manipulation, exploring ad-
versarial attacks at multiple levels, including modifying texture and raw pixels using gradient
and attention mechanisms. Recognizing the broader implications of compromised IPAD al-
gorithms, we aim to contribute to developing robust defenses against emerging presentation
attack methodologies. In brief, the contributions of this research are multifold: (i) Several
novel input level corruptions are proposed which does not utilize the network information in
learning its noise structure; (ii) An extensive experimental evaluation has been performed to
evaluate the robustness of deep IPAD algorithms; and (iii) Comprehensive comparison with
existing corruption and adversarial attacks demonstrates the effectiveness of the proposed
attacks.

2 Related Work

Since the problem of iris presentation attacks is well known and has existed for more than
a decade, several defense algorithms have been developed, ranging from using handcrafted
features to current deep learning architectures. The prominent handcrafted and/or combina-
tion with deep learning features codebook [55], Haralick texture [54], local binary pattern
[56], spatial pyramidal matching [57]. The handcrafted features are simple to compute but
have a limited capacity and generalizability. The recent success of deep learning architec-
tures, including convolutional networks and transformer architectures, has seen a tremendous
jump in their utilization for IPAD [59, 60, 61]. Later, several research efforts have started
utilizing the capacity of deep learning to develop an effective and generalized architecture.
Agarwal et al. [58] proposed a Siamese architecture by combining the original and enhanced
images to capture the contact lenses’ texture features effectively. Agarwal et al. [60] pro-
posed the deep contraction expansion network to improve the IPAD performance on multiple
datasets. Recently, Jaswal et al. [62] proposed a network to learn global and local iris fea-
tures through feature calibration, convolution, and residual learning.

While deep learning architectures have proven effective in detecting iris presentation
attacks, their susceptibility to corruption and adversarial noise remains a significant issue
[37, 38]. The vulnerability of deep IPAD algorithms to adversarial perturbations and com-
mon image corruption is still underexplored. Soleymani et al. [63] developed an adversarial
perturbation to deceive iris recognition systems, yet its impact on presentation attack de-
tection remains unclear. Recently, Sharma et al. examined weight perturbation in IPAD
algorithms, though input perturbations were not addressed. Jain et al. [64] proposed a fea-
ture alteration approach to enhance IPAD robustness, though it requires deep network access
and lacks generalizability to unseen networks. While the generalizability issue in IPAD has
received attention [70, 71], unlike IPAD, vulnerability studies [69] of PAD classifiers in face
and fingerprint modalities are more advanced.

We propose several input corruption algorithms to address gaps in IPAD vulnerability
research, leveraging local and global texture features relevant to contact lens detection. Un-
like weight perturbations, our attacks are classifier-agnostic and require no classifier-specific
information, enabling broader application.
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Figure 1: Showcasing the impact of dlfferent texture embossmg alterations proposed in this

research to fool the IPAD algorithms.
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CAM-PER : REGION PERTURBATION Generating binary mask for TOP-N sensitive pixels using CAM
Figure 2: CAM-PER: A novel framework to perturb decision-making regions using Gaussian
noise from the region level to top-N sensitive pixels. Perturbations are guided by Class
Activation Maps (CAM) through Global Average Pooling and binary mask generation.

3 Proposed Iris Perturbations

The iris is rich in textural features, which are practical for iris recognition and for detecting
presentation attacks. Therefore, one primary feature we have explored for generating iris
corruption is the perturbation of textural features. In this section, we first defined the pertur-
bation generated by modifying texture regions. It is observed that the texture attacks modify
an entire area of the iris that the human examiners might notice. Henceforth, to increase the
stealthy nature and make the attack imperceptible, we identify the critical region by using the
attention mechanism and modifying either the highlighted region or a few essential pixels to
generate an adversarial iris image.

3.1 Unlearnable Perturbations: Texture Manipulation

Texture embossing [14] creates a three-dimensional effect and exploits the system’s sensitiv-
ity to textural details by mimicking natural iris variations. It involves creating a 3D effect by
highlighting the textured surface’s variations in intensity or color. It can be achieved by stim-
ulating how light and shadow interact with the surface, creating a sense of depth. To alter the
iris, different forms of texture embossing methods have been explored and are outlined as
follows: (i) Raised (R): Following the detection of the iris and exclusion of the pupil region,
an embossing kernel is applied to emphasize changes in intensity and simulate the impact of
light and shadow on a three-dimensional surface. The convolution process enhances edges,
producing a 3D-like raised texture effect on the iris. (ii) Indented (I): The kernel applied
for this introduces an indentation effect by emphasizing specific pixel values based on their
neighborhood relationships. Positive coefficients contribute to a brightening effect, while
negative coefficients contribute to a darkening effect. The resulting indented iris image ex-
hibits alterations in texture, with regions appearing to be pushed inward or indented, creating
a unique visual impact. (iii) Adaptive Embossing Kernel: To find the optimal embossing
kernel for achieving a desired texture effect while optimizing the structural similarity index
measure (SSIM), an iterative optimization process is employed. This process involves ad-
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Algorithm 1 CAM-PER: CAM Guided Perturbation and TOP-N Sensitive Pixels

Require: Original image /, CAM model cam, threshold value 6, top N value = top_N
1: Apply CAM to generate color map M: M = Y, wy - Ag
2: Threshold M to create binary mask binary_mask using :
1, ifM(x,y)>6
0, otherwise

3:  binary_mask(x,y) =

4: Generate Gaussian noise for each pixel: N(x,y)

5: Scale the noise: scaled_noise = N(x,y) x o

6: Initialize noisy image noisy_image as a copy of /

7: for each pixel (x,y) in I do

8 if binary_mask(x,y) is | then

9 Add scaled_noise(x, y) to noisy_image(x,y): noisy_image(x,y) = I(x,y) + scaled_noise(x, y)
10: end if

11: end for

12: return noisy_image

13: — TOP-N Sensitive Region Selection —

14: Sort CAM values in descending order: Mqoried

15: Select top N sensitive regions: top_N_indices = argsort(Msoreea ) [: N]
16: return binary_mask

justing the kernel’s coefficients and evaluating the impact on SSIM between the embossed
and the original image. Using strategies like grid search, the goal is to balance the enhance-
ment of visual texture with structural fidelity to the original. The outcome is a finely tuned
kernel that effectively meets both the quantitative SSIM standards and the qualitative aes-
thetic requirements of the embossing task. (iv) Puzzle (P): The puzzling effect is introduced
by dividing the iris into small pieces, which are then randomly shuffled, generating a disor-
dered arrangement of pixel values. The final step combines the original iris image with the
puzzle effect, utilizing bitwise operations to preserve the pupil region and background. (v)
Geometric Variator (H & V): Since the iris textures are random patterns, it is difficult for a
human to identify a correct arrangement of an entire iris image. Therefore, it gives the flexi-
bility to apply Horizontal (H) and Vertical (V) flips to this iris region without being noticed.
Once the flipping operations are executed, the altered iris region is composited back onto
the original iris image using the pupil center and radius. Gaussian smoothing is applied to
the entire iris image to enhance the visual coherence of the altered image, aiming to reduce
noise and create a more visually appealing result. Figure 1 shows the impact of the different
texture embossing alterations performed to generate attack images. It can be seen that due to
effective pre- and post-processing, the proposed alterations are imperceptible. On top of that,
the proposed alterations are based on essential properties of iris images and do not involve
any network to find the external perturbations.

3.2 Proposed Learnable Perturbations

The class activation map (CAM) is one of the strongest mediums for identifying the critical
region in an image, based on which a deep network makes a particular decision. Inspired by
this understanding, to further boost the strength of the proposed texture manipulation attacks,
we first identify the sensitive regions in an iris image, and later these regions are modified
using Gaussian noise. The CAM is generated using an unseen network; in our case, we have
used the ResNet-50 architecture [19]. First, a coarse localization map (M) from an input
image (I) is generated to highlight significant areas for classification, followed by applying
Global Average Pooling (GAP) to feature maps (Ag) for targeted noise addition. These are
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Figure 3: Comparison of perturbed iris generated using the proposed CAM-PER and TOP-N
sensitive methods alongside its perturbation density.
expressed as :

1 H W

GAP (Ay) = wa;j;Ak(iJ)v MZZk:Wk~Ak

Feature maps (Ay) are pulled from the last layer of the model, capturing essential details
from the input image. The Class Activation Mapping (CAM) uses these maps, considering
their height (H) and width (W), and applies weights (wy) to highlight crucial areas for clas-
sification. By weighting and summing these maps (wy - Ax), CAM pinpoints the most critical
regions for the model’s decisions. The binary mask extraction step is crucial in selectively
perturbing sensitive regions highlighted by CAM. Pixels with CAM values surpassing a pre-
defined threshold (6 = 0.03) are labeled as sensitive (1), while those below the threshold are
considered non-sensitive (0). Mathematically, the binary mask is derived as:

1, ifM(x);;>6
B(x)i,j :{ Ay

0, otherwise

Gaussian noise (N(x,y)) is generated for each pixel location in the input image. The noise
is scaled by a factor (o) = 0.001 based on the sensitivity of each pixel in the binary mask.
Noise is only added to pixels labeled as sensitive in the binary mask. Mathematically, the
perturbed image is formulated as:

Ixy) = I(x,y)+o-N(x,y), ifB(x,y)=1
' I(x,y), otherwise

where (x,y) denotes pixel coordinates, M(x,y) represents the CAM value at pixel (X,y),
a controls the magnitude of perturbation, and 6 is a predefined threshold. Figure 2 shows
the schematic diagram, and Algorithm 1 shows the pseudocode of the proposed attack based
on the knowledge of identifying critical iris regions using CAM. This approach effectively
balances preserving image integrity with targeted adjustments to improve defense against
adversarial attacks.

3.2.1 TOP-N Sensitive Pixels

To further make the proposed CAM-based perturbation effective and to perturb every critical
region, we have proposed an adaptive variant where we have identified the top-N pixels in
the influential regions. To prioritize the top-N-sensitive regions, we rank pixels based on
their CAM values and perturb only the top-sensitive pixels. Figure 3 compares the proposed
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CAM-PER and TOP-N sensitive methods, analyzing perturbation density and SSIM scores
on original contact and live iris images. Then, the perturbed image I’(x,y) is formulated as
follows:

x,y)+a-N(x,y), ifpixel € top-N
I(x,y) otherwise

(orlglnal) images.

3.3 Existing Adversarial Attacks
3.3.1 Image Corruptions

Apart from the proposed attack, to effectively identify the sensitivity of the IPAD algorithms,
we have utilized the existing image corruptions [38] and adversarial perturbation algorithms
[37]. We have used several image noises, which have recently been explored to benchmark
the robustness of deep neural networks, namely Gaussian Noise, Shot Noise, Impulse Noise,
Defocus Blur, and Glass Blur. Gaussian, Impulse, and Shot are grouped as NOISE; on the
other hand, Defocus and Glass are grouped as BLUR.

3.3.2 Adversarial Perturbations

Adversarial perturbations are imperceptible noises learned from the network information,
such as the gradient or parameter of the network, to fool the DNNs. In this research, we
have used state-of-the-art (SOTA) adversarial perturbation algorithms, namely Fast Gradi-
ent Sign Method (FGSM) [10], Patch-wise Iterative Fast Gradient Sign Method (PIFGSM)
[20], Pixle [21], and one-pixel attack [23]. The FGSM and PIFGSM utilize the network’s
gradient information to manipulate the iris images; whereas, Pixle is a black-box attack that
rearranges the pixel information, and a one-pixel attack restricts the modification of pixels
to a few pixels, which can lead to the misclassification of an image. As shown in Figure
4, while these corruptions are natural, they can drastically alter the appearance of an image,
and if applied with less severity, they are found less effective in fooling deep neural networks

[38]. Further, the adversarial perturbations are minute but need access to the DNNs.
Experiments Results and Analysis

In this section, we first define the IPAD datasets used to generate the perturbations and eval-
uate the robustness of SOTA IPAD models. Later, the SOTA models used for extensive ex-
periments are described in detail, followed by the results and analysis reflecting the possible
vulnerability of each IPAD model.

4.1 TIPAD Datatsets

The experiments utilize several benchmark datasets, including MUIPAD [24], LivDet-17
HOT-WVU [25], and HITD-CLI [26]. This study focuses exclusively on images depicting
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LIVE CONTACTS

ing for each dataset, encompassing both Live and Contacts classes.

textured contact lenses and live iris captures. The IIITD-CLI dataset employs two scanners,
namely the Cogent and Vista. The dataset distribution is as follows: IIITD-CLI (Cogent
Scanner) comprises 1163 live iris and 1160 contact lens images, while IIITD-CLI (Vista
Scanner) includes 1000 live iris and 1065 contact lens iris images. Additionally, LivDet-17
IIT-WVU features 1725 live iris and 1625 contact lens images, and MUIPAD contains 1466
live iris and 1681 contact lens images.

Three primary methods are utilized sequentially to segment the iris region accurately
so that only the texture region of the iris gets perturbed. First, a Gaussian blur is applied
to grayscale iris images to reduce noise and enhance smoothness. Later, the Hough Circle
Transform [27] is employed to detect the iris by identifying circular shapes within the image,
guided by parameters like the minimum and maximum radius. If the Hough Circle Transform
cannot precisely localize the iris, Haar Cascades [28] are employed as an alternative method
for eye detection. The examples in Figure 5 show iris region segmentation for live and
contact lens classes using Vista and Cogent scanners from the IIITD CLI dataset.

4.2 TPAD Models

In this research, we have used state-of-the-art (SOTA) convolutional neural networks (CNNs)
along with specific deep IPAD models: (i) D-Net PAD [32] (D-Net), (ii) Vision Transformer
ViT-B/16 [33], (iii) HDA-IDVC [66], (iv) [PAD CNN [67], and (v) BUCEA Algol [66].
The use of CNNss in iris presentation attack detection is prominent and has shown tremen-
dous success in identifying presentation attack instruments (PAls) [61]. Therefore, their
evaluation and another SOTA image classification model, ViT, are critical. The robustness
of the models and success of the proposed and existing attacks are reported using equal error
rate (EER%) and average classification error rate (ACER%)% which is the average of attack
presentation error classification rate (APCER%) and bona fide (original) classification error
rate (BPCER%).

4.3 Results and Analysis

Examining the equal error rate (EER %) on clean images in Table 1 across various models and
datasets reveals distinct performance differences. Notably, models like D-Net PAD, ViT, and
BUCEA Algol consistently demonstrate high clean accuracy, achieving 0.00% EER across
multiple datasets such as IIITD-CLI (Cogent and Vista) and MUIPAD, indicating the effec-
tiveness of the models in detecting contact lenses when the images are not perturbed. In
contrast, models like HDA-IDVC, IPAD CNN, and BUCEA Algol show a broader range
of EERs, reflecting their varying accuracy. For example, IPAD CNN achieves a 1.56%
EER on the IIITD-CLI dataset, while HDA-IDVC EER peaks at 59.08% on LivDet-17,
highlighting the importance of model selection for specific applications due to performance
variability. The one question we asked is, while the CNNs show tremendous accuracy in
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EER (%)
Dataset | Model | Proposed Methods Existing Methods
Clean H v 1 P R cp ™™ BLUR NOISE FGSM | PIFGSM Pixel OnePixel
Parameter — (=03 | 1=100 =001 =001 =250 p=3
D-Net 000 415 519 172 0.00 029 345 0.00 14.08 % 18.69 1025 872 0.00 50.57 50.00 5144
VIt 000 801 1508 | 2213 | 8103 | 4655 | 4368 54.60 54744995 | 6140+ 1245 0.86 35.63 50.29 5201
IITD-CLI HDA-IDVC 3132 | SL12 | 6455 | 2098 | s34 | 4713 | 5072 48.56 5201+ 1.22 47.79£9.13 4052 49.43 49.14 5172
(Cogent) IPAD CNN 287 119 | 1754 | 977 489 9.20 3095 948 11,63+ 183 2433785 316 49.14 4199 4713
BUCEA Algol 0.00 0.00 1.87 7.47 1.72 46.55 5043 47.99 6.61 243 23.75 £ 11.87 0.00 50.29 49.14 47.13
D-Net 0.00 728 875 0.00 1.80 0.31 52.81 0.00 55.16 + 4.63 4333£741 0.00 50.62 46.88 53.20
vIT 000 1750 | 100 | 5156 | 4500 | 5375 53.12 53.12 567241878 | 4802+ 10.15 0.00 4150 4719 5031
IITD-CLI HDA-IDVC 5938 | s492 | 5082 | 4281 | 6031 | 4906 | 5125 5094 45.00 +3.97 55.53+530 5161 4839 27.50 60.94
(Vista) IPAD CNN 156 1885 | 1639 | 000 281 1094 | 3594 1125 1734 +552 021036 406 49.69 4875 50.00
BUCEA Algol 000 3279 | 3689 | 250 0.63 14.06 54.37 4313 5672+ 5.97 44.06 + 3.5 031 52.19 47.50 4531
D-Net 5.19 6.31 7.34 5.76 4.61 6.63 0.00 4.90 7424050 1141 £9.63 6.92 50.72 48.66 5144
vIT 178 623 732 1556 | 3890 | 3473 | 5836 37.03 37.60 = 0.20 3838+ 171 533 4827 4887 50.58
LivDet-17 HDA-IDVC 5908 | 6043 | 5229 | 5634 | 3948 | 5432 | 5388 2522 S3744163 | 5427+2043 5115 4827 51.59 56.92
IPAD CNN 15.13 20.70 20.92 7.78 17.00 13.98 20.75 18.16 19.81 £1.73 24.30 £ 0.80 14.84 49.71 49.14 50.58
BUCEA Algol 504 1046 | 1089 | 1023 | 1859 | 4193 | 10000 47.69 9.58 +030 40.05 + 11.43 821 49.14 50.14 48.70
D-Net 000 1126 | 1290 | 535 238 436 4812 0.00 3364335 27.53 + 1146 040 5188 5149 41.52
vIT 000 | 2373 | 1211 | 4218 | 3901 | 3941 437 4257 4010+ 4.62 3571+ 6.70 059 50.30 50.10 49.11
MUIPAD HDA-IDVC 3881 | 5828 | 5350 | 1525 | 4505 | S248 | 4931 60.83 55.84 4 4.76 5280 £4.54 4950 52.08 45.74 6337
IPAD CNN 27 828 1338 | 673 436 376 13.07 653 7824350 1115 £932 307 52.87 50.69 47.92
BUCEA Algol 000 0.64 096 | 6396 | 3030 | 3564 | 2653 an 465+378 51.55 1120 3.17 50.69 51.29 49.11

Table 1: A detailed EER(%) comparison between proposed attacks such as Horizontal (H),
Vertical (V), Indented (I), Puzzle (P), Raised (R), CAM-PER (CP), and TOP-N (TN) to
existing attacks like BLUR, NOISE, FGSM, PIFGSM, Pixle, and OnePixel.

detecting contact lens attacks, is it their actual effectiveness? For that, we have applied sev-
eral proposed and existing perturbations to both the clean and contact lens iris images of
each dataset. It is observed that the proposed region-sensitive induced perturbation, namely
CAM-PER (CP), drastically reduces the performance of each model on each dataset. For
example, it is observed that the BUCEA Algol yields a significant jump in EER from 5.04%
to 100.00% on the LivDet-17 dataset. This vulnerability suggests iris textures may be more
prone to manipulations impacting feature clarity. Similarly, on the IIIT-CLI (Cogent) dataset,
the ViT model’s EER spikes to 81.03% under CAM-PER (CP), highlighting the potential
model-agnostic capacity of the proposed attack, which has been trained on an unseen model
(ResNet-50). Interestingly, the IPAD algorithms are found to be less susceptible to flip at-
tacks (both horizontal and vertical) than the texture embossing attacks. It highlights that
even if the features are flipped without modification, they can be effectively used to detect
presentation attacks. In contrast, D-Net shows exceptional resilience, maintaining a 0.00%
EER under several attacks, including a minimal rise to 3.45% under CAM-PER on Cogent,
suggesting inherent robustness or limitations in attack effectiveness against it. CAM-PER
(CP) and TOP-N (TN) attacks notably degrade model performance, exemplified by CAM-
PER’s increase in EER to 100.00% for BUCEA Algol on LivDet-17 and 58.36% for ViT on
LivDet-17, underlining the urgent need for effective defense mechanisms. Among existing
methods, NOISE proves particularly potent, elevating ViT (EER to 61.40% on IIITD-CLI ),
surpassing the disruption caused by BLUR. Apart from the proposed attack, the PIFGSM
attack is highly stealthy and increases the EER by a significant margin. It is to be noted
here that the attack drastically distorts the image quality and hence is a primary factor for its
high attack success.

4.4 Comparison with existing perturbations

The box plot shown in Figure 6 (left) shows the equal error rates (EER%) for proposed
and existing methods, revealing key insights into their performance against various adver-
sarial attacks. IPAD algorithms show resilience against flip attacks but are notably vulner-
able to CAM-PER (CP) and TOP-N (TN) attacks, highlighted by high median EER values.
Proposed Indented (I) and Puzzle (P) attacks outperform existing attack methods in effec-
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Figure 6: (left) Box-Plot analysis of EER% for proposed and existing attacks. (right) The
detailed heatmap analysis of ASR (%) increment and ACC(%) decrement relative to baseline
(clean ASR (%) & ACC (%)). The datasets Cogent, Vista, LivDet-17, and MUIPAD are
abbreviated as CGT, VST, LVD, and MUP.

tiveness, achieving higher median EERs, and display wider EER spreads in the box plot
analysis. Similarly, the IPAD models are significantly vulnerable to learning-based adver-
sarial perturbations, including OnePixel attacks. The proposed Top-N (TN) attack perfectly
misled the ViT model when used to classify presentation attack and clean images, and all the
images of both these classes are swapped into each other, leading to a perfect ACER value
of 100%. Conversely, the Puzzle (P) attack’s significant impact, reaching a 50% ACER on
the ViT model, shows that even if the model bifurcates the images into patches, their puz-
zled nature in the original image can mislead the classifier. In contrast, existing attacks such
as PIFGSM showcase their robustness and consistently high impact across various models
and datasets. For instance, the PIFGSM attack manifests a potent disruption with an ACER
reaching up to 70.53% on the D-Net PAD (D-Net) model in the MUIPAD dataset, underscor-
ing the enduring effectiveness of gradient-based adversarial methods. However, it is noted
that the PIFGSM attack drastically reduces the visual quality of iris images compared to the
proposed attacks. In contrast, the D-NET model showcases resilience with a 0.00% ACER
against multiple attacks on the IIITD-CLI dataset, though its ACER spikes to 52.65% under
the proposed CAM-PER (CM) attack on the Vista dataset.

Figure 6 (right) shows the high attack success rate (ASR) of each of the proposed and
existing attacks, highlighting the critical vulnerability of each deep IPAD algorithm. Starting
with the heatmap analysis (increase in ASR from clean baseline), we observe a significant
rise in ASR for specific models and attack combinations, indicating a high susceptibility
to those particular attacks. For example, Cogent-ViT (CGT_VIT), Vista-ViT (VST_VIT),
and MUP-BUCEA show a 100.0% increase in ASR when subjected to the CAMPER (CP)
attack, implying a complete breakdown against the attack. On the other hand, some models
are relatively robust against specific attacks. For instance, Cogent HDA-IDVC (CGT_HDA)
only shows a 0.00% increase in ASR when faced with the Horizontal (‘H’) attack, indicating
better resilience. ‘We assert that such a missing understanding of the vulnerability of IPAD
algorithms against a wide range of corruptions and adversarial perturbation can lead to a
false sense of security and might limit the development of a robust solution’. The proposed
study can help understand the limitations of current deep IPAD algorithms and aim to bring
robustness in its mechanism [64].

5 Conclusion

Iris recognition is one of the most popular and effective mediums for secure access to so-
phisticated mediums like mobile phones, borders, and digital payments. However, it can be
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hacked by simply wearing contact lenses. Several iris presentation attack detection (IPAD)
algorithms have been developed to secure such systems, but their resiliency against input
perturbations is not adequately addressed. Henceforth, we comprehensively evaluated the
vulnerability of several IPAD networks through extensive experiments. Our findings reveal
that while some models exhibit foundational robustness against input corruptions, no model
is wholly impervious to nuanced and sophisticated attacks. This vulnerability underscores
the pressing need for developing resilient defenses to counter adversarial tactics. In the fu-
ture, we aim to build an accurate yet robust iris presentation algorithm to handle a variety of
adversarial and noise perturbations.
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