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Abstract

With the widespread use of Deep Learning models in computer vision that often sur-
pass human capabilities, many recent works have focused on eXplainable Al (XAI) to
understand these black-box models and their failure modes. Over the years, this field
has made large strides, proposing new feature attribution methods for explaining sample
predictions, metrics for comparing these methods, and frameworks for jointly applying
XAI tools. As most of these efforts try to understand where the network is looking
at, we still don’t fully understand what image elements consistently tend to result in
stronger explanation signals. To address this gap, we propose XICH (XAl-based Intra-
Class Hierarchies), a new methodology for unveiling hierarchies between clusters of
same-class images based on XAl In a nutshell, XICH computes a new metric called
“dominance”, which represents a statistical comparison of the explanation energy be-
tween clusters by laying out their representative samples as a mosaic. We investigate
the dominance between clusters by mapping instances from the training data to clusters
extracted from the evaluation data. We observe that low-dominance clusters tend to have
much less corresponding instances in the training set, revealing out-of-distribution bi-
ases. The proposed metric is highly interpretable and complements existing intra-class
sample hierarchization methods (e.g. based on logits or softmax probabilities), as our
results shows that they are non-correlated.

1 Introduction

The recent success of deep learning models for computer vision in critical tasks such as
medical image analysis, remote sensing, and autonomous driving vehicles has increased the
need for transparency and accountability of model decision-making processes [14, 28, 33],
and particularly through legal enforcement [1, 31, 51]. The field of Explainable AI (XAI)
has emerged to shed light on models’ predictions and, more recently, has also explored
the use of explanations to improve models’ architecture, training and debugging processes
[5, 15,25, 55].
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Over the last decade, several feature attribution methods applicable to Convolutional
Neural Network (CNNs) were developed for explaining sample predictions, most of which
are based on specific explainable modules, output sensibility to input perturbations, gradient-
activation energy measures or hybrid strategies [5, 9, 11, 18, 24, 37, 54, 58, 60, 65, 69]. With
an increasing number of XAI methods, different types of explanations are generated, increas-
ing demand for suitable XAl sanity checks [2, 13] and evaluation metrics for comparing these
methods in local and general contexts [3, 10, 12, 27, 30, 36, 47, 50, 52, 70].

Most of these methods focus on generating visualizations that show where the network
is looking at or, more precisely, what is the set of pixels that contribute the most towards
the final prediction, or that aligns well with human annotations. However, no prior work has
attempted to understand which image elements consistently tend to result in higher-energy
explanations for a given class when comparing different samples. We hypothesize that this
difference in explanation energy observed when comparing pairs of samples is linked to the
sample representativeness in the training data. To address this gap and investigate this re-
search question, we propose XICH (XAl-based Intra-Class Hierarchies), a new methodology
for unveiling hierarchies between clusters of same-class images based on XAl. In a nutshell,
XICH computes a new metric called “dominance”, which represents a statistical compari-
son of the normalized explanation energy between clusters by laying out their representative
samples as a mosaic.

The proposed method starts by deep clustering same-class non-training images (i.e., val-
idation/test), then performing a statistical comparison of energy explanation ratio of repre-
sentative images from clusters laid out as a mosaic, followed by a cluster analysis on training
images. In contrast to perturbation-based X Al methods, XICH elicits coherent activation be-
cause because it uses image mosaics composed by quadrants, each sampled from the original
distribution [6]. An additional advantage is that this method aids in bias detection [6]. Since
the introduced noise is in-distribution, any errors in the model’s explanations effectively
identify and exemplify its biases. Furthermore, the proposed method defines a notion of
sample hierarchy that emerges naturally when comparing the energy in explanation signals
of some samples in relation to that of other samples.

Given that real applications datasets can be extremely large [21, 35, 41, 59] and hence
comparing each pair of images can be unfeasible, the clustering step allows us to compare
images that are semantically similar while avoiding the high computational cost.

Based on a comprehensive set of experiments, we observe that low-dominance clus-
ters tend to have much less corresponding instances in the training set, revealing out-of-
distribution biases. The proposed metric is highly interpretable and complements existing
intra-class sample hierarchization methods (e.g. based on logits or softmax probabilities),
as our results shows that they are non-correlated. To the best of our knowledge, this is the
first effort to create a cluster hierarchy based on XAl metrics, focused on comparing sam-
ples rather than methods, which provides a seminal work for understanding model bias and
sensitivity to cluster features.

2 Related Work

XAI Metrics. As surveyed in [22, 39, 46], currently there are dozens of XAl metrics. Some
metrics published metrics related to dominance approach includes Focus [6], that uses image
mosaics to quantify coherency of explanation between different classes further (discussed in
subsection 2); Level of Strenght Explanation (LSE) [10], that compare explanations and
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quantifies the extent to which the explanation produced by a post-hoc explainability method
supports the class predicted by a classifier. Localization [8], a metric that assesses the ability
of an explanation to highlight relevant regions or features in the input data that most influence
the model’s decision. Pawlicki et al. [52] also provides an extensive review on XAl metrics,
and highlights that the proliferation of metrics enhances the understanding of XAl systems
but simultaneously exposes challenges such as metric duplication, inefficacy, and confusion.
The proposed Dominance metric, besides being interpretable, complements existing intra-
class sample hierarchization methods based on logits, as our results show that they are non-
correlated (see Section 4).

Mosaic in XAI applications. The use of mosaic composed of image grids in XAI appli-
cations has been increasing in the last years [6, 7, 17, 34, 55, 61]. Neural networks are
known to rely on context information for their decisions [42]. Popular localization evalua-
tion scores in classification tasks, like the Energy Pointing Game (EPG) score [65, 68], rely
on object bounding boxes for localization, assume that the model only relies on informa-
tion within those bounding boxes, and have the additional drawback of requiring bounding
box requirement. As an alternative approach, creating a grid of images (a mosaic) and mea-
suring localization to the entire image cell allows evaluation on datasets where bounding
boxes are not available and takes into consideration the context of whole target class images.
Bohle et al. [17] proposed using a grid of images composed of nine images, where every
class occurred at most once on each grid, one of the different classes sampled from datasets.
They propose an evaluation metric based on the ratio of the sum of positive evidence for
the target class in the position of the target class and the same measure in the whole mosaic
grid. Arias-Duart et al. [6] proposed “Focus”, with a very similar configuration to Bohle
et al. [17], a quantitative visual pseudo-precision metric for feature attribution explanation
methods generated for image mosaics. The non-target images’ positive relevance explana-
tion would behave as structured noise within the dataset distribution. They also proposed the
use Focus to identify and characterize biased features found in CNN models based on com-
parative activation of similar features present (or absent) in different classes in the mosaic.
Pillai and Pirsiavash [55] proposed using a grid of images composed of four images, one of
a target explanation class and three distraction images randomly sampled from other classes
(as distraction images). With this configuration, the explanation of the grid for the target
class would not be affected by the distraction images. Hence, the authors train a model to
minimize the difference between the grid explanation output and the explanation preserved
in the target class image and zeroed in all distracted images. Shah et al. [61] used a simpler
grid of 2 images, one MNIST digit image and a “null block” randomly placed, the digits are
progressively blurred, and the model is trained with ROAR (Remove-and-Retrain) method-
ology [34]. Rao et al. [57] proposed comparing mosaic explanations with different mosaic
processing strategy settings (merging or disassembling mosaic images at different stages of
CNN processing) to efficiently compare explanation methods.

Clustering Applications on XAI. While much of the focus in XAI has been on explaining
supervised learning tasks, leveraging unsupervised learning techniques to generate expla-
nations for supervised methods can be a powerful technique. One application is use clus-
tering features such as embeddings, distances, prototypes, and centroids as explanations
[4, 16, 48, 53, 63]. Another approach is to group samples to reduce the computational
complexity of combinatorial algorithms. One of these applications is finding the minimum
set of exemplars to cover a dataset is a computationally intractable problem (specifically,
it is equivalent to the NP-hard set cover problem). Simultaneous Construction of Clusters-
Bounded Exemplars (SCCRB), and Simultaneous Construction of Clusters and Exemplars
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Figure 1: Proposed XICH framework for assessing explanation dominance in a pre-trained
network. Images are clustered in latent space (GAP features), and synthetic 4-quadrant mo-
saic queries are built from exemplars of distinct clusters. Attribution maps on mosaics quan-
tify dominance as the fraction of attribution energy within quadrants of a given cluster.
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(SCCE) [20] provides efficient approximation algorithms that simultaneously partition the
data into groups and find a near-optimal set of exemplars for each cluster. This theme is also
discussed by Son et al. [62] and Jia et al. [38]. Clustering can also be used as a pre-processing
or structuring step to improve the stability and efficiency of LIME [58] and SHAP [45] XAI
methods. DLIME (Deterministic LIME) [66] proposes replacing random perturbation with
a data-driven, deterministic approach based on clustering. Similarly, while SHAP (SHapley
Additive exPlanations) [45] requires combinatorial analysis to evaluate input features’ im-
portance based on the interaction of features and it’s outputs. C-SHAP (Clustering-Boosted
SHAP) [56] addresses this efficiency bottleneck by integrating K-Means clustering as a pre-
processing step grouping similar instances.

3 Methodology

The general process for computing explanation dominance values can be seen in Figure 1.
Initially, the images whose predictions we want to explain are individually passed through
the model. An intermediate model output (or even the logits) is used as an embedding for
the images. In particular, we can use the Global Average Pooling (GAP) layer because it
provides a rich semantic representation of the image with a significantly reduced spatial
component. This embedding is used for clustering the images. Next, images that will com-
pose the mosaic are sampled from two different clusters, ¥ and y;. The mosaic is then
passed through the model, and the explanation for the mosaic is extracted. The explanation
dominance for each of clusters ¥; and ; given the mosaic is calculated based on the sum of
the energies across the explanations for the images representing the respective cluster (the
formal definition is provided in Section 3.4. This process is repeated for each pairs of clus-
ters a predefined number of times. Finally, we sort the clusters according to their relative
dominance to obtain a hierarchy between clusters.

In addition, we evaluate the statistical significance of the dominance between two clus-
ters via hypothesis testing using the dominance values obtained for each mosaic. The null
hypothesis consists of the dominance mean for one cluster in relation to the other being 0.5.
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If the null hypothesis is rejected, the test indicates that there are visual features in one cluster
that tend to be more attended by the model.

3.1 Clustering Based on Pooling features

In this work, we used the Global Average Pooling (GAP) layer after the final convolutional
block (conv-layer 4) of standard ResNet architectures as a deep feature representation of
images. Let the output of the final convolutional block be a 3D tensor, or feature map,
denoted as Xge,. This tensor has dimensions H x W x C, where H is the height and W is
the width of the feature map, while C is the number of channels. For a standard ResNet-50,
the shape of the feature map is typically 7 x 7 x 2048 due to the adaptive average pooling,
while for a standard ResNet-18, it is typically 7 x 7 x 500. The GAP layer transforms this
H x W x C tensor into a 1 X 1 x C feature vector, denoted here as v,.:
1 HW

- Xfeal(ivjac)v (l)
HxW l;’j:l

Ve

where v, serves as a compact, semantic-rich representation of the input image. In this paper,
we used K-Means with a pre-defined number of clusters on v, features to group the images
into clusters that have a clear visual coherence, in addition to reducing the computational
complexity of combinations of images comparisons.

3.2 Mosaic Building

Let I = {img;,img,,..,imgy} be a dataset composed by N images and L = {ly,l,..,Ix} is a
set of K class labels. Every image in [ is associated with a unique class label from L through
a function [(img). Each set of images belonging to the same class ¢ € L is partitioned in a
pre-defined number P of clusters I' = {71, 72, .., ¥p}. A mosaic is an image grid composed
of several image samples'. For simplicity, we have used four images per mosaic arranged
in a 2-by-2 grid as in previous works (see Section 2). As a slight abuse of notation, we will
denote the cluster index of an image as y(img) € T

In order to build a set of mosaics M = {m|,my,..,m;}, where J is the total number of
mosaics in M, we create each mosaic m € M by selecting four images from two different
clusters of the same class ¢ € L:

m = {imgi, ,imgi, ,imgiy,imgi, }, 2
where [(img;) = { for all j € {iy,...,is} and there exists y(img;) # y(imgy) for some k €
{ity...,ia}.

3.3 Explanation Extraction

GradCAM method [60] is based on use of gradients and activations of a target class score
with respect to the feature maps of a specific model layer. These gradients are leveraged to
compute a set of weights, Ot,f , that capture the importance of each feature map k for a given
class /. These weights are calculated as

i lyy 0
d-JEE 2 >

Note that model training is based on individual images; mosaics are only used at inference time after rescaling.
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where y’ is the score for class £ before the softmax activation, and A ; represents the activa-

tion at spatlal location (i, j) in the k-th specific model layer feature map, denoted by A¥. The
't

dA )k
normahzatlon factor (the number of pixels in the feature map). These weights are then used
to compute a weighted combination of the feature maps, followed by a ReLLU activation, to

produce the final heatmap:

term

represents the gradient of the class score with respect to this activation, and Z is a

LGrag.cam = ReLU (Z a,fAk> “4)
%

This resulting heatmap, Lérad—C AM- can be upsampled and overlaid on the original image to
provide a clear visual indication of the regions the model focused on for its prediction. In
this paper, we use a publicly available implementation of GradCAM [26].

3.4 Dominance Calculation

Arias-Duart et al. [6] defines the positive relevance of an explanation for an image img
within a mosaic m with respect to a class ¢ using Grad-CAM as

Ry(img)= Y La.cam- )
(i,j)€img

Building on this definition, we define the dominance of cluster ¥ over cluster y; for a
given mosaic m as
dy- . (m) _ Zimgkey,- Rll(imgk)
v Yimg Re(img)

Since all images belong to the same class £, the dominance of cluster y; over cluster ; is the
complement of the dominance of cluster ¥; over cluster ¥, i.e.:

(6)

Zimg S Ré’(imgk)
dy o (m) = =55 = L= dy (). ©)
Zimg R[(lmg)
Considering that images sampled from each class can be very different and interact in
different ways, the final dominance score Dy, y, is the average over a set M consisting of J
mosaics produced by the images sampled from clusters % and ¥; (we used J = 25):

dy. .
DJ/;,)(/: Z M 8)

meM J

Values of Dy, ;. ~ 0.5 indicate absence of dominance between clusters, Dy, 5. < 0.5 in-
dicates dominance of cluster ¥; over cluster ¥;, and Dy;,yj > (.5 indicates dominance in the
opposite direction. However, to determine statistical significance, alongside the matrix of
dominance, we compute a matrix containing the p-values for the dominance between every
pair of clusters based on the t-test where the null hypothesis corresponds to a dominance
mean of 0.5 (i.e., absence of dominance). After that, we sort the clusters according to their
relative dominance to yield a final hierarchy between clusters.
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4 Experiments and Results

In this paper, we used ResNet-18 and ResNet-50 [29]. It was selected because the Residual
Network (ResNet) family has a wide range of explanation libraries and is well-known in the
scientific community. Both models are fine-tuned from Imagenet-1k pre-trained weights.
During the training, we apply label smoothing [49, 64] to prevent overconfidence, a learning
rate schedule that combines a linear warm-up with cosine annealing [43], and the AdamW
optimizer for better generalization through decoupling the weight decay from the gradient
update step [44]. For explanations, we have focused on GradCAM explanations, as it fast to
compute, and is proven to be best in Focus metric [6], closely related to this paper.

All tests were done on the CIFAR-10 and CIFAR-100 datasets [40] that has been used in
several XAl applications [19, 23, 60, 67]. In Figure 2, we can see an example of the baby
and train classes on CIFAR-100, which are categorized into 5 clusters based on GradCAM
explanations. Note that in Example 1, the trained model emphasizes explanations related
to babies seen from the front rather than side-view images of babies. On the other hand,
in Example 2, we found that side-view baby images have stronger explanatory signals than
those seen further away in bed. In Example 3, we found that clustering grouped similar train
images into different clusters, and therefore, the explanatory signals have similar intensities.
As expected, there is no dominance between these clusters. In Example 4, we see that colored
trains seen from the side have much stronger explanatory signals (they exhibit dominance)
compared to darker train images seen from the front.

Results CIFAR100 for class baby, model resnet50, GradCAM explanation, 5 clusters. Results CIFAR100 for class train, model resnet50, GradCAM explanation, 5 clusters.
Cluster relative Dominance GradCAM Dominance Stat Signif, H0=0.5. expl. : GradCAM Cluster relative Dominance GradCAM

E

Figure 2: Cluster Dominance for CIFAR-100, classes baby and train with 5 clusters, based on
GradCAM explanations. Matrix of relative dominance and matrix of statistical significance
for dominance of clusters (top). Example 1: a baby class mosaic image based on samples
of cluster A and C with overlaid explanation (bottom left). Example 2: a baby class mosaic
image based on samples of cluster C and E with overlaid explanation (middle left). Example
3: a train class mosaic image based on samples of cluster F and G with overlaid explanation
(middle right). Example 4: a train class mosaic image based on samples of cluster F and J
with overlaid explanation (middle right).

Note that Grad-CAM explanations are directly proportional to the activation energy (see
Equation 4). Therefore, it is natural to expect that high explanation energies in the last con-
volutional block would be correlated to high output logits and/or probabilities. However, our
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analysis shows that this is not the case (see Figure 3). For this graph, we processed each
image as an individual cluster, this approach is expensive but allows us to compare existing
typically used intra-class sample hierarchization variables (logits or softmax probabilities)
with dominance [32]. Dominance is non-correlated and can serve as a single or complemen-
tary parameter for sample hierarchy purposes.

Logits vs Dominance for class Bicycle Softmax Probabilities vs Dominance for class Bicycle

S e et s 2880 AT
. el e Figure 3:  Cluster
.2 . SSUURRIN I b * oo soonmensss  DOMInance vs Logits
N [X2 I and softmax probabil-
. ) 02 .o ities for classes baby
i o] . and bicycle CIFAR-
T e T Y™ "™ 100 dataset, for this

Logits v Dominance fo cass baby Softmax Probabities us Daminance for clss baby
[ S L) LTINS, eraph, we have done
P L T . tests considering each
’ % 20 /"_/"'/ image as cluster, and
el I P LT thus it was obtained
2 e e " o e an absolute relation

. " <" ol sa &L .+.. ... betweenimages.

Dominance Dominance

We found out that the test samples with lower dominance in the evaluation data are gen-
erally related to samples that have little representatives in the training data. In Figure 4,
although we cannot directly relate the clusters with the highest dominance to the high num-
ber of training samples, we can see the relationship between the cluster with the lowest
dominance and the lowest number of training samples (cluster with dominance ranks 3 and
4). This means that samples whose representation is relatively rarely seen during the training
process present relatively weaker explanation signals (low dominance). This is achieved by
fitting the training data into the evaluation clustering instance.

The same behavior can be seen on CIFAR-10 dataset (Figure 5). Note that the airplane
class has a different behavior. This happens because cluster 0 has only 3 samples, and they
are highly similar to the other clusters. Cluster 4 is also highly similar to the other clusters;
therefore, there is almost no dominance between clusters in this class (see the first dominance
matrix related to this class).

5 Conclusions and Future Work

We introduced a novel measure of hierarchy based on clustering and a post-hoc XAI method,
the dominance. Our measure is not intended to replace the other existing evaluation ap-
proaches in the literature, but rather to complement the evaluation and debugging process, as
it measures a different and novel aspect to be considered in the relation model-dataset. It can
be used to understand model explanations, unveil out-of-distribution samples, or shed light
on sample imbalance bias detection.

Calculation of dominance (and its relation to out-of-distribution interpretation) has mul-
tiple steps related to embedding, clustering, and explanation extraction; each of these steps
can be unfolded for further improvements. On the other hand, new applications such as
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Figure 4: Relative Distribution of samples per clusters (cluster ID refers to dominance rank,
0 is the most dominant and 4 is the least) in CIFAR-100 dataset for all classes, with 5 clusters.
Clusters are fitted on the evaluation dataset and predicted on the training dataset. Note that
the least dominant group (clusters 3 and 4) is consistently underrepresented in the training
dataset, meaning that the model gives less explanation importance to this image cluster.
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Figure 5: Relative Distribution of samples per cluster (cluster ID refers to dominance rank;
0: most dominant, 4: least dominant) in CIFAR-10 dataset for all classes. Dominance matrix
for all classes on the right.

XAI dominance curriculum-learning and dominance-based adversarial explanations are un-
explored opportunities for other researchers to dive deep with this new metric and findings.
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