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Abstract

In this paper, we propose ReSeg-CLIP, a new training-free Open-Vocabulary Seman-
tic Segmentation method for remote sensing data. To compensate the problems of vision
language models such as CLIP in semantic segmentation caused by inappropriate interac-
tions within the self-attention layers, we introduce a hierarchical scheme utilizing masks
generated by SAM to constrain the interactions at multiple scales. We also present a
model composition approach that averages the parameters of multiple RS-specific CLIP
variants, taking advantage of a new weighting scheme that evaluates representational
quality using varying text prompts. Our method achieves state-of-the-art results across
three RS benchmarks without additional training.
https://github.com/aemrhb/ReSeg-CLIP.

1 Introduction

Semantic segmentation is the task of assigning a class label to each pixel in an image, e.g.,
representing land cover in the context of remote sensing (RS). Despite recent advancements
[28, 29], existing methods face two fundamental challenges: they typically require large sets
of training data to perform well, and models trained on a specific dataset often do not gen-
eralize well to other domains. Recently, vision language models (VLMs) such as CLIP [30]
and ALIGN [18] have emerged as promising tools to overcome these limitations. Trained
via contrastive learning to align images and text in a shared embedding space, these models
exhibit strong zero-shot performance in image classification. This has motivated adaptations
for Open-Vocabulary Semantic Segmentation (OVSS), resulting in models that can recognize
categories beyond those seen during training. Following the adaptation of CLIP for OVSS,
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Input image CLIP ReSeg-CLIP
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Figure 1: Example of distorted inter-patch attention for a selected patch (white squares).
Left to right: input image, attention map obtained by the original CLIP vision encoder [30],
and the attention map obtained by our method. Blue corresponds to low attention, red to
high attention in relation to the selected patch. CLIP often assigns high attention to arbitrary
patches without any relevance for the selected patch. Applying our method results in high
attention concentrated on patches associated with the same object as the selected patch.

early research focused on fine-tuning to enhance pixel-level predictions [13, 43]. However,
fine-tuning is often limited to smaller and less diverse datasets, typically leading to a re-
duction in the model’s zero-shot capacity [43]. In response, training-free approaches have
been proposed, mainly focusing on natural images [1, 14, 24, 32, 35, 45]. Training-based
adaptations of VLMs for OVSS in RS are proposed in [2, 5, 12]; Li et al. [23], though
not training CLIP itself, introduces an upsampling module that requires training. Observing
this lack of completely training-free OVSS solutions in RS, we propose ReSeg-CLIP, a new
such method for high-resolution RS imagery which is based on two main contributions:

* A hierarchical masking strategy to refine attention computations by imposing con-
straints based on hierarchical segmentation results obtained by the Segment Anything
Model (SAM) [19], addressing problems of existing methods to obtain accurate pixel-
wise predictions. Introducing these masks at different vision encoder stages, context
is considered at different scales while mitigating the impact of unrelated patches.

¢ A combination of multiple domain-adapted CLIP variants for OVSS, to improve
the generalization capabilities of existing models. For that purpose, we propose the
Prompt Variant Separation Margin, a new metric quantifying each model’s seman-
tic representational quality by exploiting synthetic text prompts, and use it to compute
model-specific weights for the averaging of the model parameters.

Refinement is needed because VLMs like CLIP align text with global image features
(via the [CLS] token in ViTs [11]), causing attention weights to overlook semantically
related regions [24]. For instance, Figure 1 shows some patches ("outlier patches" [32]; white
squares) that attract disproportionately high attention from the rest of the image when using
CLIP; focusing attention on such irrelevant regions causes problems for dense prediction.
Consequently, several studies [1, 24, 32, 35] have tried to refine attention scores such that
semantically related patches attend more strongly to one another. Although these methods
boost inter-patch correlations, they still suffer from patches interacting with unrelated regions
[45]. Zhang et al. [45] constrain attention to regions defined by SAM masks but only at a
single scale. To address varying object sizes, we extend their approach with a hierarchical
masking strategy that enables the model to capture information across multiple levels.
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Our second contribution mentioned above is relevant because CLIP, pretrained on nat-
ural images, often underperforms on RS data due to a significant domain gap. Prior work
[25, 36, 50] tried to solve this problem by fine-tuning CLIP on RS data. However, our own
experiments based on GeoRSCLIP [50] and RemoteCLIP [25] show that these models still
struggle to generalize across classes unseen during training, an essential requirement for
OVSS. Inspired by model composition techniques such as [7, 8, 20, 37, 47], we thus propose
to combine several CLIP models, each fine-tuned on a different RS dataset, by averaging the
model parameters and applying the combined model for inference. We introduce a new met-
ric called Prompt Variant Separation Margin (PVSM), and we use this metric for computing
the weights to be used for averaging. PVSM measures the representational quality of the
individual models based on the variability of the text embeddings generated for different text
prompts related to the same class.

2 Related work

Vision Language Models seek to learn joint representations from both visual and textual
data, thereby enabling cross-modal understanding and reasoning. CLIP [30] and ALIGN
[18] accomplish this by contrastive learning. Early work on applying VLMs to RS data fine-
tuned CLIP using RS5M, a RS-specific dataset [50]. Subsequent works tried to obtain better
models by fine-tuning them on more curated RS datasets [25, 36]. Nevertheless, VLMs
continue to perform poorly on semantic segmentation. In RS, this challenge is compounded
by the limited scale and diversity of datasets, restricting zero-shot performance [25].

Open-vocabulary semantic segmentation aims to assign a class label to every pixel in an
image, specifying the set of classes by textual descriptions at test time. Existing VLM-based
OVSS methods fall into three categories: (1) Training-based adaptations [10, 22, 27, 40],
which often generalize poorly due to limited datasets. (2) Two-stage approaches, which first
generate mask proposals and subsequently apply VLMs [9, 41], are limited by pretraining on
full images. (3) Training-free methods that modify the computation of self-attention. Li et al.
[24] reveal inconsistencies in the relations between semantic regions formed by self-attention
layers, with variants such as GEM [1], ClearCLIP [21] and SCIiP [35], aiming to enhance the
attention mechanism. Instead of modifying the attention mechanism, potentially introducing
discrepancies between training and inference, CorrCLIP [45] uses SAM to restrict the spatial
extent of patch interactions (though only at a single scale). All these works are primarily
developed for natural images and do not account for the unique characteristics of RS data.

Open-vocabulary semantic segmentation for RS is addressed in [44, 49], via contrastive
training for pixel-text alignment and the combination of text embeddings from the CLIP text
encoder with features from an image encoder, respectively. However, such methods do not
leverage existing VLMs trained on large text-image datasets. This is achieved in [42], where
CLIP is combined with a specialist RS image branch in a dual-stream image encoder. Cao
et al. [3] use CLIP to generate orientation-adaptive similarity maps, followed by some re-
finement layers. Dutta et al. [12] incorporate visual features from SAM to enhance semantic
representations. However, all of these methods require training to achieve a good perfor-
mance. To the best of our knowledge, SegEarth-OV [23] is the only approach for OVSS in
RS which is claimed to be training-free; however, while its CLIP-based predictions need no
training, its upsampling module still does. In contrast, our method is entirely training-free.

Model merging aims to combine independently trained models of identical architecture,
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often employing a linear interpolation between the model parameters [17, 31, 37, 48]. Ilharco
etal. [16] define task vectors as the differences between fine-tuned and pre-trained weights to
capture task-specific directions and to enable model control via simple arithmetic operations;
Zhang et al. [46] extend this by learning the weights for computing a linear combination.
Recent studies propose compositional approaches for low-rank adaptation [15, 38], as well
as sample-wise interpolation strategies [6, 26]. Typically introducing learnable parameters,
these methods are not training-free; also, they neither address OVSS nor RS. In contrast, we
compose RS-adapted model merging for OVSS in a training-free manner.

Discussion: Most related to our work are [23] and [45]. While in [45], SAM masks are
used to limit the patch interactions at a single scale, we use SAM masks at multiple scales
to consider different context regions. Li et al. [23] also address OVSS in RS, but focus on
improving the spatial resolution of a prediction obtained by a CLIP variant, requiring training
an upsampling module. We improve the CLIP-based predictions without any training.

3 ReSeg-CLIP

The goal of our proposed OVSS method, ReSeg-CLIP, is to map an RS input image X €
RA*W>3 to a dense label map Y € R¥*W (see Fig. 2) in a training-free manner, i.e., we
rely on pre-trained CLIP models and do not introduce training at any other stage. H and W
denote the image height and width, respectively, and the number of channels is 3, because
CLIP is pre-trained on RGB images. Besides proposing, to the best of our knowledge, the
first entirely training-free OVSS method for RS, our main contributions concern (1) a hier-
archical guidance of attention in the image encoder, aiming to achieve interactions between
semantically related patches (Sec. 3.1), and (2) a new model merging approach, aiming to
enhance the model’s generalization capabilities (Sec. 3.2).

Before presenting X to the image encoder, a ViT composed of L blocks, it is partitioned
into N = £3¥ disjoint patches {x;}Y|, x; € R”*"*3 that are flattened and projected to a se-
quence Z = [CLS,z;,2,...,Zy] € RWN+DXD of patch embeddings z; € RP (D: embedding
dimension) and a class token CLS. Z is processed by the modified vision encoder (see Sec.
3.1 for details), resulting in image embeddings f; € R”, where the set of all f; is denoted by
F ¢ RVFDXD | The text encoder, a standard Transformer [34], receives class-specific base
prompts. Here, a base prompt is defined to be a text string (e.g., "an aerial image of [c] in the
city") for all semantic classes ¢ € {1,...,C} (C: total number of classes). This results in text
embeddings t. € RP, where the set of all t. is denoted by T=[t;,ts,...,tc] € RE*P In con-
trast to the standard CLIP, relying on the CLS token, the patch level predictions are obtained
by computing the cosine similarity between image embeddings F and text embeddings T via

<fitc>
i1z [[tc[l2
resulting in the similarity map Simy,,, € R#/P*W/PxC_Sim, . is bilinearly upsampled to the

original image resolution, resulting in Sim € R?*">*C 'and the pixel predictions are obtained
by ¥, ) = argmax, Sim ) ., where Sim(, ,) . € Sim is the score for class ¢ at pixel (x,y).

Sim; . = €R, (1

3.1 Refining the attention map of CLIP

The main goal of the proposed refinement of CLIP’s attention maps for OVSS is to enhance
feature interactions among patches from relevant regions and suppress interference with ir-
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a
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— Layer without attention mask.
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Figure 2: ReSeg-CLIP consists of CLIP-based vision and text encoders and SAM. The input
image X is processed by both the vision encoder and SAM, resulting in features F. SAM pro-
duces hierarchical masks M, converted into attention masks A for the final vision encoder
layers (red blocks). Text prompts for each class are encoded into embeddings T, which are
compared with the features F via cosine similarity. The results are upsampled to score map
Sim, and the segmentation Y assigns to each pixel the class with highest similarity.

relevant ones. To do so, we use class-agnostic masks provided by SAM to generate attention
masks that constrain feature aggregation in the CLIP vision encoder. For generalization
across scenes, containing both long-range and fine-grained patterns, we propose a hierarchi-
cal masking strategy to enable multi-scale feature aggregation, by varying the SAM mask
generator and producing coarse masks at earlier stages in the encoder to encourage broad
attention, and fine-grained masks at later stages to emphasize detailed semantic structures.
We restrict the attention of the last r = 1,2,...,|0®| layers (cf. Fig. 2), by utilizing SAM
masks with different hyperparameter configurations 6, € ® (®: set of all considered configu-
rations; cf. App. A.1). The L, = L — |@®| initial layers of the vision encoder are not modified.
|®| is a hyperparameter, enabling control over the depth at which attention constraints are in-
troduced. Each mask generator segments an input image X into Q, regions, encoded by a set
of binary masks Mg, = {M,,M,,,...,Mgp,}, where each mask M,, € {0,1}"*V indicates
a distinct region. These masks are combined to form a label image S, € {0,1,...,Q,}*W,
where each pixel (x,y) is labeled with its corresponding region index RI,: S,(x,y) = g, if
M,,(x,y) =1, and S,(x,y) = 0 if the pixel does not belong to any segment (i.e., background).
The dominant RI of each patch x; C X is obtained via majority voting. Let RI; €
RH/P*W/P denote the patch-level RI, a,b € {0,1,...,N} the indices over the input sequence
Z, Where index O corresponds to the class token and indices 1 to N to patch tokens. The
mask A") € {0, 1}(V+1D*(V+1) “applied to the attention mechanism of the vision encoder at
layer [ = L, + r, prevents high attention between patches not being in the same regions:
) 1 if (a=b=0)V[(a>0)A(b>0)A(RL, =RI,)]
= . 2)
(@b) )0 otherwise ’

where the class token is restricted to attend only to itself (case a = b = 0). The process is re-
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peated independently for each set of hyperparameters 6, € ®, each yielding a segmentation-
aware attention mask. The final set of attention masks for the last |®| layers with restricted
attention is represented as A = {A() A®) .. A(®D1 To integrate the masks into the vi-
sion encoder, we apply a large negative bias to rnasked logits. Specifically, for layer  we set

el ¢ K, (7) e (1)
OK ;1) = ”@b if the attention mask A(a,b) = 1,and QK , ;) = —oo otherwise, where Qj

and Ké” are the query and key vectors of tokens a and b, and D is the embedding dimension.
This ensures that tokens only attend to others within the same SAM-derived region.

3.2 Model composition based on PVSM

To improve generalization while remaining training-free, we merge several CLIP variants
by averaging their parameters with weights derived from a new metric, the Prompt Variant
Separation Margin (PVSM). Given a set of models {Mod, }?_, with parameters ¢,, we obtain
fused parameters ¢y = Zgzl wo0,, where the weights w, are based on a new metric that
measures the similarity of text embeddings obtained for augmented text prompts for the same
class. Images are not considered to compute this metric (and, thus, the weights) because
encoding augmented images across a large dataset would be computationally too expensive.

For each class ¢, we define a base prompt pr.. To introduce lexical variation, we
define a set Syn, = {s, nv}],:’L] of Ny class-specific synonyms syn, , and sets of prefixes

n= {77:,1”} *_, and suffixes X = {0, }],:’c‘:: \» where each prefix m,, is a natural language
phrase that precedes the synonym, and each suffix o, is a phrase that follows the synonym.
For every class ¢, we randomly generate K (K is a hyperparameter) natural language vari-
ants v ;, z = 1,...,K by combining a random prefix 7, € II, a synonym s., € Syn,, and a
random suffix o;; € X as v, =@, +" of "+syn., +" "+0y,2,2r,%,%0 = 1,

The resulting variant set of K prompts v, , for class c is denoted by V. = {v. 1,. vC7K}

Given a pre-trained CLIP model Mod,, each prompt variant v ; € V, is tokemzed and en-

Mod, (tokenize(ve, ))

0 __
coded as t7 , = Mod, (tokenize(ve )]s * where tokeni ze refers to the CLIP preprocessing

of text input for the model’s encoder. Let T = {tc 15---»t0 g } be the embeddings for class ¢

and model Mod,. We compute the intra-class similarity /*‘i(nct)rf
(c),0

ity across all unordered pairs within T¢, i.e., [ = K(K{l) Yi<m<w<k (0t ), and the
(c)0 class

nter

as the average cosine similar-

inter-class similarity p. /'~ as the average 51m11ar1ty between embeddings of class ¢ and those

of all other classes ¢’ # c, i.e., ,u< c)o = BT c 0 Yo #Z, IZ <t0 s ", /> The separation

1nter
margin for class ¢, defined as 8o = ui(;t)ra — ,uinct)er , reflects how tightly grouped the class

embeddings are and how distinct they are from other classes, indicating how well the model
Mod, has learned the underlying class concepts. We define the margin for model Mod, as:

C
PVSM, = é Y (e 3)
c=1

and use it to define a weight w, of Mod, as the normalized separation margin, thus w, =
PVSM, / Zu, , PVSM,,. The parameters ¢ of the fused model Mody, are obtained via a lin-
ear combination of the individual model parameters ¢,: ¢ = ):(?:1 W, - @p. This formulation
enables the weighted interpolation of models in parameter space, with the weights indicating
how well a model is able to produce meaningful text embeddings from varying prompts.
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4 Experimental setup

Datasets: We evaluate our method on the validation set of three high-resolution RS bench-
mark datasets: Potsdam [33] consists of orthophotos with a ground sampling distance (GSD)
of 5 cm and 6 classes, UDDS [4] consists of low-altitude oblique UAV images (4 + 1 classes)
and OpenEarthMap [39] provides 0.25-0.5 m satellite/aerial images (8 + 1 classes) from
various regions on earth. Compared to the datasets used for training CLIP, GeoRSCLIP and
RemoteCLIP (we use their model parameters in our experiments), vehicles and roads are far
finer in Potsdam, UDDS5 diverges from the straight-down and medium-resolution satellite
views and OpenEarthMap covers additional land-cover categories and varied sensors.

General Setup: All experiments employ the CLIP-L/14 backbone. We parametrize our
model as a weighted ensemble of RemoteCLIP [25] and GeoRSCLIP [50], selecting them
because they supply pretrained weights that are compatible with our used architecture. Re-
moteCLIP was pretrained on 828,725 image—caption pairs automatically generated from 17
public datasets spanning satellite and UAV platforms with GSDs from 5cm to 1 m [25].
GeoRSCLIP was pretrained on RS5M, a dataset of 5 million RS image—text pairs, compris-
ing roughly 3 million web-filtered aerial images and 2 million captioned satellite and aerial
scenes from BigEarthNet, FMoW, and MillionAID [50]. The weights for Remote-CLIP and
GeoRSCLIP are set to 0.37 and 0.63, determined according to Section 3.2. Input images are
divided into tiles of 224 x 224 pixels. As these tiles may not fully capture the spatial context
of all objects, we use a sliding window approach with a stride of 50 pixels and average the
probabilities of a pixel across all overlapping tiles. Our vision encoder has L = 24 layers in
total and we apply attention masking to the final |®,| = 6 layers. The SAM hyperparame-
ters ®, controlling the generation of masks at varying levels of granularity are detailed in
Appendix A.1. All hyperparameters were determined using 5% of the Potsdam training set.
Details on the text prompts we have used are given in Appendices A.2-A.4.

Evaluation strategy: We evaluate our method using the mean Intersection over Union
(mloU), and compare it against established training-based OVSS frameworks for RS, i.e.,
SegEarth-OV [23] and the method proposed in [2]. As, to the best of our knowledge, there
are no training-free OVSS RS approaches, we also compare our approach to training-free
methods designed for general-purpose segmentation. These baselines are initialized with the
original CLIP weights, following prior work [23]. Additionally, we compare our method
against a naive CLIP-based baseline by computing cosine similarity between the image and
patch tokens. We conduct ablation studies utilizing the pretrained CLIP, RemoteCLIP and
GeoRSCLIP models, assessing the zero-shot semantic segmentation performance of each
model individually and exploring different variants of model composition (cf. Section 3.2).

5 Results and discussion

Method performance and comparison: Comparing the results of our method and those of
other RS OVSS frameworks (see Tab. 1), our method achieves an 8 percentage points (pp)
higher mIOU on the Potsdam dataset compared to [2], and 7.4 pp to 8.8 pp lower mloU com-
pared to SegEarth-OV. This performance gap can be attributed to the use of FeatureUp. This
effect is also evident in Figure 3, where the label map generated by SegEarth-OV appears
more consistent and homogeneous. In contrast, our method achieves more precise spatial lo-
calization and clearer class distinction in adjacent regions (red circles), and also demonstrates
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SegEarth-OV ReSeg-CLIP

Figure 3: Results on the UDDS5 dataset. SegEarth-OV yields more homogeneous masks,
our method offers better class distinction in adjacent regions (red circles). Despite some
interpolation-induced noise, our model effectively detects mislabeled areas (orange square).

Method | Potsdam | UDD5 | OEM | Training

Cao et al. [2] 30.3 - - v
Ye et al. [42] 45.7 - -
SegEarth-OV 47.1 50.6 | 40.3

ReSeg-CLIP | 383 | 432 | 324 |

v
s
X

Table 1: Comparison of mIoU [%] across OVSS RS methods. Last column: v': full-network
training; XX training of the upsampling module; x: no training.

robustness in scenarios with mislabeled areas (orange square). While effective, FeatureUp
requires to be trained, which conflicts with our training-free design and hinders a fully fair
comparison. However, as FeatureUp is model-agnostic, it could be optionally integrated into
our method.

As listed in Table 2, compared to a naive CLIP-based model parametrized based on
[30] and to a variant of ReSeg-CLIP without using any SAM-based attention masks in the
vision encoder (called C+P), our method achieves significantly higher performances across
all datasets. These gains can be attributed to our proposed modifications; the refinement of
attention maps and the focus on semantically relevant regions. Additionally, our approach
outperforms other training-free methods, including MaskCLIP and SCLIP, across all three
benchmarks. When compared to GEM, our model performs better on Potsdam and UDDS,
with gains of 1.8 pp and 2.0 pp, respectively, though it lags on OEM by 1.5 pp. Relative to
ClearCLIP, our method shows superior performance on UDDS5 and OEM by 1.4 pp but falls
short by 2.6 pp on Potsdam. This variation suggests that OVSS models, originally developed
for natural image domains, can still generalize reasonably well to RS tasks, though their
performance tends to be inconsistent across datasets. In contrast, our method demonstrates
greater consistency, achieving best or second-best performance on all benchmarks. This
underscores the effectiveness of our SAM-based hierarchical attention mechanism compared
to modifications of the attention module without semantic guidance for inter-patch attention.

Analyzing the per-class IoU values given in Table 3, it can be seen that our method
achieves good results of about 60% for the classes Building and Vegetation. On the other
hand, the IoU values for Vehicle and Background are particularly low, which is also the case
for all other methods listed. This indicates that segmenting smaller objects and obtaining
a meaningful representation of such a heterogeneous class as background poses particular
challenges to training-free methods in general and requires further investigations.
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Dataset \ CLIP \ MaskCLIP \ SCLIP \ GEM \ ClearCLIP \ C+P \ Ours

Potsdam | 14.5 31.7 36.6 | 365 40.9 18.8 | 38.3
UDDS 9.5 324 387 | 412 41.8 15.0 | 43.2
OEM 12.0 25.1 29.3 339 31.0 153 | 324

Table 2: Comparison of mloU [%] (best in red, second best in blue) across training-free
general-purpose methods. C+P refers to ReSeg-CLIP without using any SAM-based atten-
tion masks in the vision encoder, i.e., |®@| = 0.

Parametrization | Weighting | 0 1 2 3 4 5 | mloU

CLIP [30] - 259 444 346 415 6.1 34| 245
GeoRSCLIP [50] - 348 544 501 51.0 147 56| 33.0
RemoteCLIP [25] - 365 614 391 481 28 25| 304
[50] + [25] PVSM 41.7 60.2 533 593 113 3.7 | 383
[50] + [25] equal 39.1 565 499 556 106 35| 359

[50] +[25]+[30] | PVSM |29.0 489 349 441 81 28| 289

Table 3: Per-class IoU [%] and mean IoU (mloU) [%] (best in red, second best in blue) on
the Potsdam dataset. All variants with |®| = 6 layers with SAM-based attention masks in the
vision encoder (cf. Sec. 3.1). Classes: 0: Artificial Surface, 1: Building, 2: Natural Surface,
3: Vegetation, 4: Vehicle, 5: Background.

Ablation studies: We conducted two ablation studies. The results in Table 3 show that ini-
tializing our model with the original CLIP model weights performs poorly (24.5% mIOU),
while using the weights of RemoteCLIP and GeoRSCLIP achieves a 5.9 pp and 8.5 pp higher
mlOU, respectively. As CLIP was not exposed to RS data during training, this is an expected
outcome. Among all pairwise combinations, merging RemoteCLIP and GeoRSCLIP yields
the best results, highlighting the effectiveness of fusing complementary information for more
generalizable representations. Employing the proposed PVSM strategy increases the mloU
by 2.4 pp compare to equal weighting, demonstrating the semantic expressiveness of our
metric. In contrast, combining all three models performs worse than the best pairwise com-
bination. We hypothesize that this is due to parameter oversmoothing, which may suppress
critical neural activations and dilute the individual strengths of the fine-tuned models. Our
second ablation study investigates the impact of varying the number of final layers in the
vision encoder that restrict attention based on SAM-derived masks. The results show that in-
creasing this number up to 6 progressively improves the mloU up to 38.3% (cf. Tab. 4). This
highlights the effectiveness of hierarchical feature aggregation guided by SAM masks. How-
ever, when the number of masked layers is increased beyond 6, the performance drops. This
indicates that preserving global context in early layers while applying localized attention in
later ones is optimal for the segmentation performance.

6 Conclusion
In this work, we introduce ReSeg-CLIP, a fully training-free method for OVSS of RS im-

ages. Our method tackles two challenges of VLMs: disrupted patch-level attention in dense
prediction tasks and poor generalization across domains. To address these challenges, we
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] 0 1 3 6 12 18
mloU [%] | 188 255 337 383 321 194

Table 4: Effect of number of layers in ReSeg-CLIP’s vision encoder with SAM-based atten-
tion masks |®| on Potsdam dataset (best in red, second best in blue).

propose a hierarchical attention masking strategy that applies multi-scale SAM-generated
masks at different vision encoder depths and a weight-space model composition technique
using weights derived from our novel data-driven PVSM metric. Extensive experiments
across three RS benchmarks demonstrate improvements in accuracy and robustness due to
our hierarchical masking strategy and model composition technique, respectively. Combin-
ing both contributions, our method achieves promising results particularly for buildings and
vegetation, outperforms existing training-free approaches and achieves competitive results
with partially trained ones. Future work following the training-free paradigm may explore
incorporating image-aware model fusion criteria, optimizing hierarchical masking for effi-
ciency, and improving the alignment of masks with the true semantic boundaries.
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