HUANG ET. AL: SAR INCREMENTAL LEARNING 1

Distribution Modeling and GenAl-Assisted
Projection for SAR Incremental Learning

Heqing Huang' 2 ' The School of Electronic and
huangheging@buaa.edu.cn Information Engineering,
Fei Gao' Beihang University,
feigao2000@163.com Beijing, China
Vahid Akbari2 * 2 Departmen of Computing Science and
vahid.akbari@stir.ac.uk Mathematics,

University of Stirling,

Stirling, UK

Abstract

In class incremental learning for synthetic aperture radar (SAR) imagery, models
must acquire new categories while retaining knowledge of previous ones. Generative
replay can mitigate forgetting by synthesizing old class samples. However, vanilla gen-
erative networks, such as variational autoencoder (VAE), prioritize pixel level recon-
struction and do not inherently enforce class separability, which may not be optimal
for incremental recognition. To address this issue, we analyze the distribution of the
dataset used. The class-wise latent distributions are modeled via flow-based density es-
timation, enabling the generation of representative, in-distribution exemplars. Then we
combine with current-task data, the exemplars support a feature projection between old
and new latent spaces, from which a numerically optimized closed-form classifier is re-
constructed. This dual use of learned distributions both constrains generative replay to
in-distribution regions and calibrates decision boundaries to reduce drift. Experiments on
SAR benchmarks demonstrate that our approach achieves state-of-the-art accuracy while
maintaining a superior stability and plasticity trade-off.

1 Introduction

Synthetic aperture radar (SAR) imagery is vital for earth observation, environmental mon-
itoring, and disaster management [3, 4, 17, 28]. Among them, the SAR Automatic Target
Recognition (ATR) system is the key to realize the above applications, which is designed to
automate the precise identification of various types of targets from SAR images. In opera-
tional SAR, the steady expansion of mission scope and the introduction of novel target types
pose a core challenge: the tracking system must accommodate new classes while retaining
performance on known ones. Retraining the entire model for new classes is costly and of-
ten impossible without historical data. Fine tuning only on new classes causes catastrophic
forgetting, sharply degrading performance on previous ones. Class incremental learning
(CIL) [19, 25] meets this need by enabling models to acquire knowledge from disjoint class
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sets while retaining prior information. In such SAR applications, exemplars from previous
classes may be absent or limited, as privacy regulations and proprietary restrictions often
prevent their storage or sharing, necessitating alternative strategies to preserve prior knowl-
edge.

Generative Artificial Intelligence (GenAl) models, such as variational autoencoders (VAEs)
[15] and generative adversarial networks (GANs) [6], have been applied to CIL to generate
pseudo-samples of previous classes [16, 18, 29, 34], reducing reliance on large exemplar
sets. However, in the SAR domain, effective generative replay is challenged by high intra-
class variability, speckle noise, and scarce labeled data. Furthermore, generative models
typically optimize their latent spaces for high-fidelity reconstruction, an objective that is
misaligned with the demands of discriminative ATR tasks. This focus on reconstruction
is further hampered by the standard Gaussian prior, which encourages smooth, continuous
structures that are suboptimal for forming distinct decision boundaries [27]. While such
frameworks [18, 23] excel at generating in-distribution samples by concentrating on high-
density regions, their effectiveness hinges on the assumption of a Gaussian data distribution.
This reliance, however, is often invalid in complex SAR domains, where data characteristics
differ significantly from natural optical imagery.

A more fundamental challenge is semantic drift, which occurs when the latent spaces of
old and new models become misaligned. This issue is especially acute in SAR ATR, where
class separability is inherently limited by complex scattering behaviors and diverse imaging
geometries. Recent analytic continual learning methods (ACL) [8, 42] attempt to mitigate
this drift by learning a linear projection matrix that maps features from the old model’s space
to the new one. However, a key limitation of this approach is its dependence on new task
data to indirectly estimate the feature drift of old classes. The reliability of this estimation
diminishes as the semantic gap between old and new tasks widens, leading to increased bias
and further compromising the stability of the learned model.

In this study, we tackle catastrophic forgetting in SAR CIL while preserving stable de-
cision boundaries across incremental steps. To better align generative replay with SAR data
characteristics, we replace the conventional unimodal Gaussian prior in VAEs with a more
expressive prior based on normalizing flows (NF) [20, 26]. Normalizing flows learn a com-
plex, multi-modal probability distribution by transforming a simple base distribution through
a series of invertible mappings, which allows them to capture the heavy-tailed statistics and
complex dependencies inherent in SAR backscatter data. Consequently, this enables the
generation of high-fidelity old class samples that preserve the fine-grained scattering pat-
terns essential for discrimination.

Leveraging the generated old-class samples from this improved prior, we perform fea-
ture space alignment by learning a projection matrix that maps features using a mixture of
generated old and real new data. This aligned feature space then enables the closed-form
reconstruction of a ridge regression classifier (RRC) [42] based on calibrated statistical sum-
maries (covariances and prototypes) from both data sources. The resulting classifier is less
biased, more robust to semantic drift, and achieves a superior stability-plasticity trade-off.

Our main contributions are: 1) Our analysis of SAR image statistics reveals that its
heavy-tailed distribution is poorly modeled by the standard Gaussian prior in VAEs. There-
fore, we correct the learned latent distribution by introducing a flexible, distribution-aware
prior based on normalizing flows, which is explicitly trained to fit the characteristic statis-
tics of SAR data. 2) Our approach skillfully combines data-driven generative modeling with
model-driven ACL. The generative model produces calibration references for old classes.
And the RRC leverages these references to achieve an efficient and unbiased model update.
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2 Related work

CIL addresses the challenge of acquiring knowledge from a sequence of disjoint class sets
while maintaining performance on previously learned classes. Existing approaches can be
broadly grouped into rehearsal-based [1, 12, 40], regularization-based [31, 32, 39], and
parameter-isolation-based strategies [30, 33]. Generative replay [13, 24, 41] mitigates forget-
ting by replacing or augmenting stored exemplars with pseudo-samples of previous classes.
These samples are synthesized by generative models trained to capture the data distribution
of old classes. Recent methods often use diffusion models [5, 22] or advanced GANSs [7, 9].
However, such models are not suitable for SAR imagery, where labeled data is scarce and
large transformer-based generators cannot be trained effectively.

Another line of work closely related to ours is ACL [8, 36, 38], which updates the classi-
fier in a closed-form manner, thus avoiding regularization-based optimization for old classes.
These methods typically estimate class prototypes, covariances, and projection matrices to
align the feature spaces of old and new models. This alignment enables stable classifier re-
construction without overwriting historical decision boundaries. When combined with our
generative replay, ACL further exploits synthetic old class features for distribution-aware
calibration. This effectively mitigates semantic drift while maintaining a favorable stabil-
ity—plasticity trade-off.

3 Method

3.1 SAR Category Incremental Learning Foundation Framework

For our SAR image CIL experiments, we adopt the incremental classifier and representation
learning (iCaRL) framework [25] as the baseline. iCaRL alleviates catastrophic forgetting
by transferring knowledge from the previous model to the current one for old classes through
a memory-constrained exemplar set. This is achieved via a soft-label knowledge distillation
loss with temperature scaling, which aligns the current model’s logits for old classes to those
of the previous model using the Kullback—Leibler (KL) divergence. The distillation loss is
formulated as follows:

Laisit = 7° - KL (Softmax (%7 /7) || Softmax (zdem /7)) (1)

where z'®her and zstdent denote the logits from the previous and current models for old

classes, and 7 represents the temperature parameter controlling the softness of the probability
distribution.

In iCaRL, the exemplar memory is typically constrained to a fixed budget, which may be
insufficient in practice. To address this, we integrate VAE [23] to enable generative replay,
synthesizing pseudo-samples of previously learned classes to augment limited exemplar sets
without incurring additional memory overhead. Finally, the baseline employs a shared en-
coder, decoder, and linear classifier to jointly optimize reconstruction, classification, and KL
divergence terms. For variational inference with this model, the sum over all elements in the
dataset n € D in the following lower bound is optimized.

L(x,y) = Ey, (o) [log pg (x[z) +log pe (v]z)] — BKL (gg(z]x) | p(2)) 2)

where x and y are the image inputs and their labels. z represents the latent variable, and
B balances the reconstruction classification terms and latent regularization. Here, pg (x|z)
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Figure 1: Our framework. An encoder maps the input to distribution parameters (i, o), from
which a latent code z is sampled. A decoder then reconstructs the input as £. The feature
projection (FP) head, which stabilizes the encoder’s features for downstream tasks and loss
computation. The fully connected classifier (C) is only used to update the model parameters.
Memory buffer stores exemplars for rehearsal and distillation; it is not used during inference.

Normalizing Fiow Prior

denotes the reconstruction likelihood parameterized by the decoder with parameters ¢, cap-
turing the probability of reconstructing the input x given the latent variable z. The term
e (y]z) represents the classification likelihood parameterized by the linear classifier with pa-
rameters &, modeling the probability of predicting the label y conditioned on z. The encoder,
parameterized by 0, approximates the variational posterior gg(z|x), while p(z) is the prior
distribution over the latent space. In the subsequent work, we use distributed modeling and
feature alignment strategies. Our overall framework diagram is shown in Figure 1.

3.2 Distribution-Aware Latent Modeling with Normalizing Flow Prior
3.2.1 Normalizing Flow Prior for SAR Generative Replay

Traditional VAEs assume latent representations follow a multivariate Gaussian distribution,
enabling efficient reparameterization and sampling. This assumption, however, conflicts
with the intrinsic statistics of SAR imagery. SAR’s coherent imaging mechanism produces
heavy-tailed and skewed amplitude statistics due to multiplicative speckle. Prior studies
confirm this mismatch: Mahapatra et al. [21] showed that Weibull distributions better fit
low-heterogeneity regions, while log-normal distributions are more suited for heterogeneous
clutter. Xie et al. [35] found that MSTAR clutter regions are better modeled by K or Weibull
distributions, whereas target regions exhibit log-normal-like characteristics. Our statistical
analysis (Fig. 2) fits log-normal, gamma, and normal distributions to pixel intensity his-
tograms of MSTAR dataset. The results show that log-normal and gamma provide a much
better fit to the heavy-tailed SAR amplitude statistics than Gaussian, underscoring the need
for more expressive priors in variational frameworks.

In order to solve the distribution mismatch problem, we add the planar NF after the stan-
dard Gaussian prior in the VAE [20, 26]. NF transforms samples from a simple Gaussian
distribution into a more expressive one via a sequence of invertible, differentiable mappings.
This design enables the latent space to more accurately model the heavy-tailed and poten-
tially multi-modal statistics of SAR backscatter. As a result, the generative module can
capture fine-grained scattering variations. This capability ultimately allows for the synthe-
sis of more representative pseudo-samples for old classes. Formally, given encoder outputs
u € RB*4 and ¢ € RB* for batch size B and latent dimension d, we first sample from
the approximate posterior: z=U+€e® 0o, €~ N(0,I), where ® denotes element-wise
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Figure 2: MSTAR pixel intensity distribution fitting. The log-normal distribution align better
with the heavy-tailed nature of SAR clutter compared to the Gaussian distribution.

multiplication. The base latent variable zg = z is then transformed through K planar flows:

%= fioofi(z0),  fi(z) =z+uch(wiz+by) 3)
with learnable parameters uy, wy, by and a non-linear activation 4(-). The log-determinant of
the Jacobian for each flow, log ’det aa—fz" ‘, is computed and accumulated to account for volume
changes under transformation. Under this flow transformation, the density of zg is given by:

log p(zx) = log p(u Z log 4)

where p(u) is the base Gaussian prior before flows. Using Eq.(2), this term modifies the
Kullback-Leibler divergence (KLD) in the VAE objective to:
1 ®)

The NF prior enhances our VAE to generate high-fidelity synthetic SAR samples for gener-
ative replay in CIL. At each incremental step ¢, real SAR samples are encoded into distribu-
tion parameters L., and O A latent code z is sampled using the reparameterization trick:
7= Ureal + €  Ogeal, € ~ N(0,1). The NF learns a flexible transformation that effectively cap-
tures the heavy-tailed and multi-modal statistics of SAR data, overcoming the limitations of
a standard Gaussian prior. The model is trained on both current task data and the generated
pseudo-samples, which enhances knowledge preservation from previous tasks.

Lxip = KL(q(zlx) | p(2)) = Eyofx) | logg(z]x) —log p(u Z log

3.2.2 Decoupled Encoder-Decoder Training

Current VAE models often exhibit unstable training dynamics on complex SAR data. This
instability stems largely from conflicting objectives during joint encoder-decoder optimiza-
tion. The encoder aims to map inputs into a well-structured latent distribution, while the
decoder must reconstruct detailed imagery from this distribution. Such coupled optimization
can lead to oscillatory behavior and convergence issues. This challenge is particularly pro-
nounced with non-Gaussian, heavy-tailed SAR statistics. To enhance training stability and
model performance, we introduce a decoupled training strategy [11]. This approach sepa-
rates the learning of the encoder and decoder into distinct phases, thereby reducing gradient
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competition and promoting more robust latent space formation. In this scheme, the overall
loss L; is split into encoder and decoder objectives that guide each component’s update, as
described below.

Encoder Update: The encoder is updated by jointly optimizing classification, reconstruc-
tion, and NF-based KL divergence terms while incorporating distillation to enhance feature
discriminability and knowledge retention. Specifically, the encoder loss is defined as:

Lene = Lets + 0 Lyec + (»Cfle + X (L%Ep + E%‘i%)) + Ad Laistinl- (6)

where o, 3,7, Ay are hyperparameters balancing each term. The KLD terms in Eq. (6) col-

lectively enforce a structured latent space: LIS ensures the latent distribution of real inputs

conforms to the prio. L regularizes the latent codes of reconstructed samples toward the

same prior to maintain generation stability. Furthermore, E{é{% explicitly aligns the latent
distribution of synthetic pseudo-samples with the prior, which is critical for mitigating catas-
trophic forgetting by preventing the representation drift of old-class data during incremental
learning. The classification loss Lcs = — Y ;log py,, where p,. denotes the predicted proba-
bility of the ground-truth class y;. Ly denotes the reconstruction loss, which is implemented
using the binary cross-entropy loss to measure the similarity between the input image and

the reconstructed output generated by the decoder. It is defined as:
Lrec = _Z[inOgG()ei)_F(l_xi)l()g(l_G(ﬁi))} @)
i

Decoder Update: After updating the encoder, the decoder is updated to ensure that recon-
structed samples and pseudo samples align with the NF prior while maintaining high-fidelity
reconstruction required for effective generative replay. During this phase, latent codes sam-
pled from real samples (z) and from the prior (z,) are decoded to generate £ and £,. The
reconstructed samples are re-encoded to compute the NF-based KL divergences. The de-
coder parameters are then updated by minimizing the following objective:

Laec = 05}/( E:ED + »C?Ili%) 4+ ALec (8)

3.3 Generative Sample Augmented ACL for Classifier Reconstruction

To mitigate semantic drift between consecutive tasks, we estimate a mapping from the old
model’s feature space to the current one via a cross-covariance transformation, following
the dual projection idea in ACL. Unlike the original ACL, which uses only real current task
samples, we augment the estimation set with generated old class samples from the VAE
backbone. The combined set Dgensreal thus contains real new class data and generated old
class data, ensuring the projection captures relationships across both old and new classes.
The specific process of our method is shown in Algorithm 1.

Let Foig, Frew € RV*4 be features from the old encoder fe,_, and the new encoder fp, on
the same inputs from Dgepirea. The projection matrix is computed as A = Cgl}iQold_mew,
where Colg = F/jjFoa is the old feature covariance. Qold—snew = FojqFnew is the cross-
covariance, and the inversion of Cgq is regularized for numerical stability. This A maps
old features into the new latent space for category-specific calibration.

After projection, we reconstruct the classifier in closed form via RRC, enabling regular-
ized weight estimation for all classes simultaneously. Class prototypes ;. and uncentered
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Algorithm 1 GenAl-Assisted Projection Classifier Reconstruction

Require: Old model fqq, current model f, dataset Dgenqreal, ridge factor y
Ensure: Updated projector P, classifier W
1: Extract old/new features for all samples in Dgensreal
Accumulate covariances X4, Znew and cross-correlation Qoid—snew
Compute projection A = Z(:lcll Oold—new; set P weight <+ AT
Calibrate old class prototypes and covariances via A
Compute new class statistics directly from Dgepyreal
Reconstruct classifier via ridge regression; apply L, normalization

A o

covariances ®; . for all old and new classes are computed from Dyenyreat, With old class statis-
tics first calibrated into the new space via A. The reconstructed classifier weights are given
by:

' sy
VVI = (Z Z q)i.c + YI) (Z Z Hi,c) (9)
i=1ceC; i=1ceC;

The reconstructed classifier weights at task # are computed to consolidate knowledge from
all observed categories. C; denote the set of class labels introduced in the i-th task, and ®; .
be the uncentered covariance matrix of the deep features for class ¢ in task i, where ¢ (x. ) is
the feature vector of the n-th sample from class c. Similarly, H; . aggregates the feature-label
correlations, with y. being the one-hot vector of class c.

Unlike methods that infer semantic drift only indirectly from new task data, our feature
projection process achieves direct alignment. We form a hybrid dataset by combining the
generated old class samples with the real new class samples. By solving a uniform linear
projection matrix on this hybrid set, we are able to simultaneously and directly capture the
drift of the old class features themselves as well as the changes introduced by the new class
features. This approach effectively transforms the drift estimation problem from an ill-posed
inference problem to a well-posed regression problem. Ultimately, a more robust and accu-
rate projection transformation is obtained.

4 Experiments

4.1 Experiment Setting

Implementation Details. We use Adam with a learning rate of 1 x 10~ and train each
incremental step for 100 epochs (batch size 32). We finally set oo = 1.0, B = 0.5, y = 1.0,
Aq = 0.1, and A, = 0.05. We selected these values using a small held-out validation split
around each coefficient, observing moderate sensitivity—especially in the trade-off between
reconstruction and distillation—followed by fixing the same configuration for all reported
runs. A memory buffer of 200 exemplars is maintained. Performance is evaluated by classi-
fication accuracy Acc = (Neorrect/Niotal) X 100%.

Model structure. Our model is an MLP-based conditional VAE with a normalizing-
flow prior. The encoder processes the flattened SAR image concatenated with a one-hot
class vector through two fully connected layers and two residual blocks to produce latent
parameters (U, o). Latent codes are sampled via reparameterization and refined by three
planar flows. The decoder takes the latent code and class vector to reconstruct the SAR



8 HUANG ET. AL: SAR INCREMENTAL LEARNING

image. We also instantiate a CNN-based conditional VAE. A ResNet-10 encoder maps each
SAR chip to a global feature, from which two linear heads produce (i, ). The latent code is
first projected by a linear layer. Then upsampled through a stack of transposed-convolution
and convolution blocks, yielding the reconstructed image.

Datasets and protocols. We evaluate on two SAR benchmarks. MSTAR [14] is an
X-band ATR dataset of military ground targets acquired at 17° and 15° depression angles
with notable intra-class variability and heavy-tailed speckle noise. SHIP dataset (FUSAR-
SHIP [10]) provides high-resolution GF-3 ship chips over diverse marine backgrounds. We
adopt two evaluation settings, “S1-S5” and “S1-S2” denote the evaluation stage indices:
(A) MSTAR (5-stage), each stage introduces two new classes in order: S1={ZIL.131, D7},
S2={ZSU_23_4, BTR70}, S3={T72, BMP2}, S4={BRDM_2, T62}, S5={BTR60, 2S1}.
And (B) MSTAR—FUSAR-SHIP (2-stage), S1 uses all ten MSTAR classes and S2 intro-
duces four ship classes from SHIP: {BulkCarrier, CargoShip, Fishing, Tanker}.

4.2 Quantitative Comparison with Existing Methods

Table 1 reports the classification accuracy under different experiment settings. Comparing
our method with representative rehearsal [25], generative replay [23], and projection-based
approaches [8]. In the 5-stage setting, where catastrophic forgetting is more pronounced, our
method achieves consistently higher accuracy across all incremental steps. Notably, it retains
91.09% accuracy at the final step (S5), outperforming iCaRL by +28.2%, VAE by +19.6%,
and DPCR by +13%, demonstrating superior resistance to knowledge degradation. Com-
pared with recent non-generative methods such as DER [37] and PODNet [2], our approach
still delivers clear gains of +4.6% and +15.3% at S5, respectively.

In the challenging MSTAR— SHIP cross-domain CIL setting, our method demonstrates
a significant advantage in mitigating catastrophic forgetting under domain shift. It achieves
a final accuracy of 92.5% at Stage 2. This result surpasses all compared state-of-the-art
methods by a considerable margin: it outperforms iCaRL by +19.3%, the generative VAE
baseline by +25.8%, DPCR by +8.4%, DER by +2.6%, and PODNet by +10.1%. The pro-
nounced performance gap, particularly over other generative and replay-based techniques,
highlights the effectiveness of our flow-enhanced generative replay and distribution-aware
classifier reconstruction in preserving knowledge across domains.

4.3 Ablation and Component Analysis

To assess the contribution of each component in our framework, we conduct an ablation
study under the 5-stage CIL setting, reporting the final-step accuracy in Table 2. Starting
from the full model (memory + NF + RRC) with 91.1% accuracy, removing the NF module
and reverting to a Gaussian prior leads to a significant drop of -21.5%. Introducing a small
exemplar memory partially mitigates this degradation +(10.1%), while adding NF further
improves performance to 83.4% by producing distribution-consistent generative samples.

MSTAR

BMP2 BRDM2 BTR60 BTR70 ZIL131 T72 Z8U234

FUSAR-SHIP

BulkCarrier CargoShip  Tanker  Fishing

Figure 3: Dataset image examples.
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Table 1: Accuracy (%) on MSTAR (5-stage) and MSTAR—SHIP (2-stage) CIL settings.
The “Upper bound” is an upper limit on the performance of the classification model, denotes
oracle joint training on all classes simultaneously. Bold = best among CIL methods.

MSTAR MSTAR—SHIP
Method S1 S2 S3 S4 S5 S1 S2
Upper Bound 99.2 982 98.0 97.6 97.1 | 984 95.9
iCaRL [25] 99.7 944 883 724 629 | 958 73.2

VAE [23] 98.7 958 91.7 812 715 | 96.2 66.7
DPCR [8] 99.0 96.7 923 854 781 | 969 84.1
DER [37] 98.9 96.1 938 90.7 86.5 |97.1 89.9
PODNet [2] 98.8 959 91.6 841 758 | 96.5 82.4
Ours 99.1 985 98.0 948 91.1 | 98.2 92.5

Replacing NF with RRC yields an even larger gain (87.1%), as the closed-form reconstruc-
tion better preserves decision boundaries. The best performance is achieved when memory,
NF, and RRC are combined, confirming their complementary effects.

The analysis of planar flow depth K indicates diminishing returns beyond an optimal
point. Performance peaks at K =3 (91.1%). A shallower flow (K = 1) causes a significant
drop of —3.7%, demonstrating the need for sufficient nonlinearity. Conversely, a deeper
flow (K =5) yields no gain (90.4%, A = —0.7%), suggesting K = 3 offers the best balance
of expressiveness and stability for this task.

We further examine the impact of the classifier type within the same 5-stage CIL setting
(Table 3). Compared with the Nearest Mean Classifier (NMC) and Softmax, the RRC consis-
tently achieves higher accuracy across all incremental steps, with a particularly large margin
in the final stage (S5: 91.1% vs. 80.2% for NMC and 81.6% for Softmax). This demon-
strates that distribution-aware closed-form reconstruction not only reduces bias toward new
classes but also enhances long-term retention of old class knowledge.

Model choice: MLP vs. CNN. Although CNNs are a natural choice for imagery, on our
64 x64 SAR chips with strict rehearsal budgets a lightweight MLP delivers equal or better
CIL accuracy at substantially lower training cost. Under identical preprocessing, augmen-
tation, optimizer, schedule, and exemplar budget, the MLP attains a higher mean accuracy

Table 2: Ablation study with different modules and different flow depth K at 5-stage, last
step accuracy setting.

Variant Final Step Acc. (%)  Avs. Full
Full model (memory + NF + RRC) 91.1 -
Gaussian prior only 69.6 -21.5

+ memory 79.7 -11.4

+ memory + NF 834 =17

+ memory + RRC 87.1 -4.0
Flow depth K (planar flows)

Full model w/ K=1 87.4 -3.7
Full model w/ K=3 91.1

Full model w/ K=5 90.4 -0.7
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Table 3: Impact of classifier choice on accuracy (%) in the 5-stage CIL setting.

Classifier S1 S2 S3 S4 S5

NMC 99.1 964 915 850 80.2
Softmax 993 968 923 859 81.6
RRC 991 986 980 948 911

Table 4: CIL results on MSTAR (5-stage). “Train time” rows list wall-clock minutes per
stage on a single 3070 GPU. “Params (M)” denotes model size in millions of parameters.

S1 S2 S3 S4 S5 | Mean | Params (M)

MLP 99.1 985 98.0 948 91.1 | 963 16.0
Train time 6 9 11 14 19 11.8 -
CNN 99.1 98.7 955 926 90.1 | 95.6 13.2

Train time 10 14 19 25 29 19.4 -

(96.3% vs. 95.6%) and a stronger last-step score (S5: 91.1% vs. 90.1%), while reducing
average per-stage training time from 19.4 to 11.8 minutes (about 1.6x faster), see Table 4.
Despite having more parameters (16.0M vs. 13.2M), the MLP trains faster: the CNN de-
coder stacks several transposed convolution blocks that are compute and memory intensive
on small chips. Crucially, parameter count does not equal training time: small kernel convo-
lutions incur higher per pixel FLOPs and memory traffic, fragmented kernel launches, and
lower hardware utilization on 64 x 64 inputs, whereas the MLP path relies mainly on dense
matrix operations with higher throughput. This explains the CNN’s similar accuracy but
consistently longer wall clock time, and motivates our choice of MLP as the default encoder
for stability, efficiency, and reproducibility.

5 Conclusion

We presented an NF prior-enhanced VAE framework with a numerically optimized classi-
fier, integrated into the iCaRL paradigm for CIL of SAR imagery. By incorporating planar
flows into the latent prior, our method better models the heavy-tailed statistics of SAR data,
enabling the generation of more representative pseudo-samples for generative replay. Cou-
pled with exemplar rehearsal and distribution-aware classifier reconstruction, the proposed
approach effectively mitigates catastrophic forgetting while maintaining adaptability to new
classes. Across standard CIL evaluations on MSTAR, our method achieves consistent im-
provements over Gaussian-prior VAE and iCaRL baselines, with the most notable advantages
emerging in the later incremental steps. Ablation analyses confirmed the individual contribu-
tions of the NF prior, sufficient flow layers, and classifier choice, while t-SNE visualizations
illustrated the superior feature separability preserved by our approach.

In future work, we will explore a unified OOD detection framework that combines dataset
based generative distribution modeling with Weibull based statistical calibration. The goal
is to jointly address incremental learning and reliable open set recognition in SAR imagery.
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