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Abstract

We propose a self-supervised pretraining framework for tree segmentation in air-
borne VHR imagery that exploits both color and infrared (RGBI) data and height maps.
Our key idea is pairing height maps and Voronoi decomposition to create auto-labels, en-
abling pretraining without human annotations. The model is fine-tuned on a small, manu-
ally annotated urban dataset, with postprocessing refining results across diverse settings.
To validate our idea, we introduce a composite dataset consisting of three parts: (1) An
autolabeled forest dataset used for height-driven pretraining, (2) an annotated urban tree
dataset used for fine-tuning and (3) a small test dataset with manual trees for validation.
Our approach achieves F1-scores of 0.65 (urban) and 0.60 (suburban). This also demon-
strates that the proposed height-driven pretraining outperforms the conventional training
by 0.44 in urban environments. In summary, we contribute a fully automatic framework
to detect trees in large and diverse regions of land using models that were trained by a
simple self-supervised mechanism utilizing height data of forest regions. Additionally,
we analyze the transfer capabilities with a small finetuning dataset. Code, models, and
data are available on GitHub.

1 Introduction

Tree detection and individual crown delineation is a relevant topic in urban development
and has recently gained attention due to growing sustainability efforts [2, 5, 14]. Tree data
analysis has diverse applications, ranging from supporting tree conservation and mainte-
nance to accelerating construction planning in urban and rural areas using land registries.
Yet, obtaining accurate annotations at scale remains a significant challenge, particularly in
dense urban landscapes. To meet this challenge, we propose to use height data as an ad-
ditional modality to reduce annotation workloads. In dense forest environments, where
large portions of airborne images are covered by trees, height information can effectively
be used to identify tree crowns, making it a powerful basis for self-supervision. This as-
pect has not been used in the past. Building on this insight, we introduce a self-supervised
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pretraining strategy that uses height data and Voronoi-based auto-labels to significantly
reduce reliance on manual annotations. The pretraining data mainly consists of forests,
but also covers areas such as forest edges, orchards, and agricultural land, as these land-
scapes typically contain few buildings and other heightened structures apart from trees.
After performing self-supervised pretrain-
ing on predominantly forested areas, we
transfer the model to rural and urban sce-
narios by fine-tuning on a smaller, man-
ually annotated dataset. Urban environ-
ments involve diverse structures, such as
buildings, roads, and mixed vegetation, that
make precise tree delineation challenging.
By combining self-supervised pretraining
in forests with targeted fine-tuning in urban
regions, our approach achieves robust tree
segmentation performance across a wide RGBI & Height Data Voronoi Map
variety of landscapes despite a relatively
low amount of labeled training data. Ad-
ditionally, we apply and evaluate postpro-
cessing techniques to improve the segmen-
tation quality. We validate our approach
on a dataset that we collected, showing that a model pretrained under our self-supervised
pipeline significantly outperforms baselines only trained on conventional computer vision
data without our pretraining approach. These findings highlight the potential of height-driven
self-supervision coupled with Voronoi-based auto-labels. In summary, our main contribu-
tions are: (1) A height-driven self-supervised pretraining framework that exploits Voronoi-
based auto-labels, substantially reducing manual annotation needs, (2) an automatic pipeline
that predicts tiles efficiently and refines segmentation results using post-processing methods,
which is well-suited for complex and generalized settings, and (3) a new dataset for tree
segmentation, consisting of two parts. The first part is a label-free forest dataset covering
forests, orchard edges, agricultural areas, and other regions with few man-made structures,
used for height-driven pretraining. The second part is an annotated (sub-)urban dataset,
where bounding-box labels in the training split are refined into precise segmentation masks
via an external model. We also include a test split containing fully manually annotated seg-
mentation masks for precise evaluation.

Figure 1: Illustration of our height-driven
auto-labeling logic: height data is used to cre-
ate Voronoi cells that correspond to tree struc-
tures in the RGB-data

2 Related Work

Individual Tree Crown Detection and Delineation (ITCD) is particularly challenging in re-
mote sensing data due to the ambiguity of visual cues in areas of continuous tree coverage.
Zhao et al. [13] compiled a concise overview over state-of-the-art deep neural algorithms
for tree detection. Currently, there are two main frameworks for the segmentation of trees
in forest regions, but none specifically target general non-forest areas to the best of our
knowledge. The first framework, Detectree [1], was trained with just 2,267 tree crowns from
tropical forests in Malaysia and French Guiana. It achieves a high F1-score but lacks model
transferability to other regions, especially non-tropical areas. In other forest types, such
as those found in central Europe, the algorithm performs significantly worse. The second
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framework [9, 10] provides a single self-supervised pretrained model that was fine-tuned
on 2,848 manually generated training samples to achieve a similar F1-score of 0.64. This
approach was trained with automatic and manual crowns from different areas in the United
States. Weinstein et al. [9] employ pretraining through an out-of-the-box tree detection
mechanism that generates unsupervised classifications through very dense Lidar data. They
subsequently refine the model with manual labels. Notably, the self-supervised training con-
tinued to improve performance even though the Lidar-derived tree labels were noisy and
contained numerous false predictions. Lassale et al. [4] detect and segment trees in man-
grove forests using various methods and compare them. They use the visible near-infrared
as well as the panchromatic band, and enhance separability using an encoder-decoder struc-
ture in addition to a Laplacian over Gaussian. Later, the tree crowns are segmented using
a watershed algorithm. This method is compared against a marker-controlled watershed,
region-growing, multi-resolution segmentation and Mask R-CNN. This method works well
in contiguous forest environments that only have one type of tree, but fails if there are either
other objects or different species introduced. In an early study, Olofsson and Holmgren [6]
showed that forests can be efficiently segmented with Voronoi cells using height maxima
as control points, which inspired our idea of combining height-driven self-supervision with
deep learning.

Our height-driven self-supervision approach addresses the core limitation of insufficient
annotated training data, which previous frameworks encountered when transferring models
from forest to non-forest regions. By exploiting height data and Voronoi-based auto-labels,
our method can generate extensive training signals. Furthermore, in contrast to existing
ITCD methods that narrowly focus on tropical or single-site environments, our framework
is designed for diverse landscapes, including rural and urban areas with varying building
densities.

3 Dataset & Preparation

We begin by presenting the dataset we used for training and its preparation process. Our data
was collected in southern Germany, which exhibits typical Central European vegetation.

It consists of aerial RGBI images, which each cover an area of 1 km? and have a reso-
lution of 0.2 m. They are true orthophotos, as they have been rectified and are true to scale.
To ensure consistent foliage and therefore consistent predictions, the images were captured
between June and September 2023. In addition to the RGB channels, we also have a near-
infrared channel, which later allows us to filter out false crown shapes using the normalized
difference vegetation index (NDVI) in the postprocessing phase (see section 4.4).

Our fine-tuning dataset includes 10,682 annotations of free standing trees (i.e., trees that
are not adjacent to any other trees or elevated vegetation) in rural and suburban areas across
12 tiles in cities of Wiistenrot, Friedrichshafen, Lahr and Waldshut-Tiengen. We use one
tile (containing 489 trees) as validation data, while the other 11 tiles serve as training and
test data. These annotations consist of coarse bounding boxes, which are later segmented
automatically, as explained in section 4.2.

Moreover, we annotated 4 more test tiles manually from different vegetation types to
serve as ground truth later in the evaluation phase: an urban environment with 1,614 trees
per km?, a village environment with 1,461 trees per km?, a countryside environment with
2,433 trees per km?, and a forest environment with 2,657 trees within 0.25 km?*. We also
incorporate height data that capture the elevation of objects relative to the ground. The height
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data is given by normalized digital surface models (nDSM). These models are computed
from digital surface models (DSM) and digital terrain models (DTM) data. This allows us to
utilize the elevation of objects such as trees or buildings independent of the surface-elevation
as an additional filtering criterium in the postprocessing phase. In summary, our dataset is
composed of three sub-datasets: A pretraining dataset with auto-labels for self-supervised
learning, which is outlined in section 4.1. A fine-tuning dataset with 12 tiles (one used
for validation as described), consisting of bounding box annotations, which are refined as
described in section 4.2. The third part is a test dataset containing 4 tiles, which consist of
manual polygon annotations that are only used for obtaining the metrics in fig. 5.

4 Methodology

In this section, we describe the method-

ology applied in our framework to make Training © inferonce

tree segmentation usable for robust pre- (oot o

diction, even with limited size datasets {Q?SE?TSbZTS]M{ Finstring H”gl

in urban scenarios. The approach begins ﬁ

with self-supervised pretraining on auto- e e
matically generated training data on for- sloenat 4 rosl |
est data using height-based Voronoi maps. 1 Qo0 wosu |
We then perform transfer learning by fine- [ = (T

tuning our model on urban orthophotos, " Seomeniton’ C

Predictions

which is the learning target of our approach.
To improve the training performance, we

additiona!ly refine the l?lbels of j[he urban - Figure 2: The figure shows the pipeline used
dataset w1th'a segmentation algquthm. Tl}e to train our models. We begin by pretraining
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fig. 2. data, continue by finetuning using our auto-
matically segmented training dataset and run
. . inference using our postprocessing heuristics.

4.1 Height-Driven § Our postp &

Self-Supervised Pretraining

In the following, we explain how the pretraining dataset is created and how we use it to
pretrain our model on forest data.

4.1.1 Generating Auto-labels from Height Data Using Voronoi Maps

Our approach of using height data is based on the fact that the tree crown is the tallest part of
the tree and that the extents of treetops in forests are roughly equal. Following this, we can
segment them simply by using the maxima positions in a forest. Trees that are not within
a forest can later be adapted to fit the cells using absolute height values. Since our dataset
only contains annotations of sparsely distributed free standing trees in small tiles of rural
environments, we have to augment the training process in order to achieve a high recognition
rate over diverse environments. This provides us with a more variable distribution of trees
across regions, which enables our model to learn more robust features, resulting in more
stable and versatile predictions at inference time.
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Instead of focusing on our initial urban and suburban objective regions, we focus on
forest and countryside areas. We do this because buildings or other constructions appear as
elevated structures in the nDSM data and would incorrectly be labeled as a tree. We use a
Voronoi algorithm to generate approximate tree shapes by treating tree crowns as elevation
maxima from 370 manually selected 1x1 km tiles in southern Germany. Figure 1 illustrates
the relation between the RGB image together with the nDSM information overlayed in grey
on the left and the corresponding Voronoi separation on the right. The nDSM may contain
minor inaccuracies, but for our purposes their impact is negligible and mitigated by our
filtering and cleanup steps.

The height maxima are computed by first applying a Gaussian filter for smoothing the
height data. Next, we threshold the pixels using a predefined height threshold, filtering
out anything below. We then apply a local maximum filter with fixed neighborhood size,
followed by a second height threshold. To obtain a prediction, we build a convex hull of all
pixels that still remain in the cell.

The final step is to clean malformed cells, which may occur when two trees with a lot
of distance are incorrectly placed in one cell. To address such errors, we compute the per-
centage of the data points in the cell that are below the first predefined height threshold.
If this portion is more than a given fraction, the cell is discarded. As hyperparameters we
used a o of 0.25 in the Gaussian filter, a first and second height threshold of 2 m and 3 m
respectively and a fixed neighborhood size of 7 m. Visual inspection shows that this method
performs well for deciduous forests and reasonably well for mixed forests. However, for
coniferous forest, the algorithm is more sensitive to hyperparameter selection. This is be-
cause trees standing close to each other are often roughly the same height, which makes it
challenging to balance the degree of smoothing and neighborhood size. This dataset enables
self-supervised pretraining on a more complicated task, as tree separation in forests is harder
than it is in urban environments from a sole visual perspective. Using height data allows for
a more systematic approach. The learned model from pretraining can then be transferred to
urban, suburban and countryside environments, which is our main focus in this paper.

4.1.2 Details on Model & Pretraining

We train our forest model using a ResNet model that is pretrained on the COCO-Set with
our automatically generated pretraining forest dataset using the Detectree framework [1].
We train the model on 1,080,078 trees with 17,690 subtiles. The set of trees is split into
50% trees for training, 35% for validation and 15 % for testing. For the training process
we used a batch size of 9 images, backbone freeze after three layers, 1,209 batches per
images, a base learning rate of 0.01, up to 20,000 iterations and a scheduler decay of 0.01
as hyperparameters. Using these hyperparameters and three-fold validation, the model can
be trained in under 12 hours on a GeForce RTX 4090.

4.2 Automatic Segmentation on the Finetuning Dataset

To further improve the training performance, we refine the manually created annotations
in the fine-tuning dataset - initially given in rectangular boxes - into more precise shapes
using a standard pretrained segmentation model. In order to employ the segmentation al-
gorithm, we first divide the 1x1 km tile into subtiles for more detailed predictions. We
extract subtiles, which are then processed with the pretrained geospatial segmentation model
of the Samgeo package developed by Osco, Wu et al. [7, 11]. Afterwards, the predictions
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are stitched together and overlapping crowns are removed based on maximizing the IoU
of the bounding boxes and segmentation masks. These overlaps occur due to the buffer
region that avoids bounding boxes clipped to subtile edges. We clean the predictions in
a three-step postprocessing procedure to further improve the results. In summary, we use
the IoU between the segmentation and ground truth box to check the validity of the seg-
mentation and use the ground truth box as a fallback. This process is manually tuned
with a second segmentation dataset. An example of this process can be seen in fig. 3.

4.3 Transfer
Learning to Urban Environments

We now use the forest model obtained
in section 4.1.2 and fine-tune it to adapt
the prediction capabilities to urban regions
with the segmented urban annotations. The
dataset consists of a training split with Figure 3: This is a segmentation example
6,579 training instances and 2,917 test in-  with blue boxes showing manual annotations
stances (30%), generated following the de- and green shapes showing predictions. The
tails specified in section 4.2. We adjust crossed black pattern is the final output of the
the training parameters to Y = 0.1 and base segmentation algorithm.

learning rate of 0.005. This model is re-

ferred to as the urban model.

In an alternative approach, we augment the training dataset with three manually selected
tiles from the pretraining dataset in order to balance the urban dataset, as we observed a
significant drop in the accuracy of detection rates and shape prediction of contiguous tree
crowns. We refer to this model as the combined model in our evaluation. We selected
Masked R-CNN [3] as the base model for our tree detection model, as this architecture is
particularly good for extracting accurate shape outlines. Mask R-CNN first detects regions
of interests and then segments individual pixels within the ROI. This method produces ac-
curate segmentations in remote sensing tasks, even in densely packed regions [8]. We use
Detectree2 [1] for training our tree segmentation models, but implement our own inference
logic utilizing Detectron2 [12] with the pretrained ResNet-101 backbone.

One of the changes we implement in the inference logic is disabling the default non-
maximum suppression (NMS) from Detectron, as we observed that NMS often results in
high-confidence in parts of tree crowns, but suppresses the prediction of the whole tree. As a
countermeasure, we keep every predicted crown from every ROI that is above a pre-defined
confidence threshold and sort it out in the postprocessing step. We give further details on the
sorting mechanism in section 4.4.

4.4 Inference

We improve the results of the tree segmentation algorithm when running inference, by per-
forming pre- and postprocessing to improve our results. We use a custom implementation
based on Detectron2 to enable efficient inference for large regions. Our approach can be
used efficiently with ~ 1 min/km? on a Nvidia RTX 4090 and ~ 1.5 min/km? on a Nvidia
RTX 4060 Ti in Central Europe.
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(a) City Tile (b) Forest Tile (c) Village Tile (d) Countryside Tile

Figure 4: The figures show the qualitative tree segmentation results of the combined model
in the four environments city, forest, village and countryside.

Preprocessing Before performing inference on images, we preprocess the tiles. There-
fore, we subdivide the original tiles into 70 x 70 m tiles, including a 20 m buffer. We catego-
rize each subtile as either forest, non-forest or combined. This allows us to further optimize
prediction time as only the models necessary on the specific tile are run. This approach al-
lows for more flexibility during inference time, but is not included in the evaluation, as we
compare the models equally on each tile.

Postprocessing We filter the results in the postprocessing using exclusion geometry,
height, NDVI, area, and containment information. As seen in the results, the exclusion of
obvious outliers, subcrowns and duplicates is especially useful in city and village areas.
The corresponding steps of the postprocessing pipeline can be found in the supplementary
material.

5 Evaluation

We evaluate the models described in section 4.3 with different comparison models, using
the metrics outlined in section 5.1. The goals of our prediction can be broken down in two
factors: (1) precise and complete urban tree detection and accurate shape recognition and (2)
accurate countrywide tree crown shapes. In summary, we can see improvements especially
in city, village, and countryside areas.

5.1 Metrics

To assess the performance of our models, we use the Intersection over Union (IoU) and the
F1-score. IoU is a standard metric for evaluating shape accuracy by comparing the predicted
and ground truth polygons. Unless stated otherwise, we classify predicted polygons with an
IoU above 0.5 as true positives. Otherwise, they are considered false positives. Based on
this classification, we compute Precision and Recall, and subsequently the F1-score, which
is the harmonic mean of Precision and Recall.

5.2 Results

We evaluate the predictions both qualitatively using new sample tiles, and quantitatively,
based on the four tiles village, countryside, city and forest as described in section 3.
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Model Comparison Tile Size Comparison
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Figure 5: F1-curves across model variants, configurations, and environments.

Top left: three trained models — the pretrained forest model, the urban model fine-tuned on
urban data, and the combined model fine-tuned on urban data with auto-labels (section 4.3).
Top right: impact of tile size during training and inference. Bottom left: ablations with
parts of the pipeline disabled. Bottom right: effect of varying IoU thresholds to assess shape
accuracy. * Duplicates are still removed even when postprocessing is disabled.

5.2.1 Quantitative Results

In fig. 5, we show the results of the evaluation using the F1-score, where a prediction is
considered a detection if the ground truth exceeds 0.5. We show Fl-score results using
different confidence thresholds of the urban, forest and combined models in the first row.
We also show the results when varying the tile sizes and IoU thresholds in the third row. The
F1-scores in table 3 at different IoU thresholds show how correctly the shape of the trees are
delineated wrt. the ground truth. Unsurprisingly, the combined model is particularly good
in city and village areas, since the finetuning labels were specifically segmented for those
environments. Finally, table 4 shows the averaged IoU score over all predictions as a second
measure of shape accuracy. In fig. 5, it can also be observed that the pretrained forest model
performs the worst in every environment except for forest areas when compared to the other
models. Even on the forest tile, it only performs marginally better than the urban model with
a maximum value of 0.25, while the combined model still achieves higher F1-scores than the
forest model with a maximum F1-score of 0.34. Overall, the combined model achieves the
highest segmentation and detection performance in each environment. Only if the confidence
threshold of the predictions is increased, the Fl-scores of the urban and combined models
converge. As a result, the urban model sometimes outperforms the combined model, which
is especially apparent in the urban environment. The models generally perform best in urban
areas, which is expected, considering they are fine-tuned on images from small villages and
cities. The evaluation based on the tile size variations in the top right of fig. 5 shows that a
more time- and resource-efficient approach to training and inference on larger tiles results in
a degradation in detection performance. It has to be noted that we filter annotations based
on an area greater 1 m?, height of the tree exceeding than 3 m and a NDVI value of at least
0.15.
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5.2.2 Qualitative Results

In fig. 4, we show the qualitative results of applying the combined model on the image tiles
city and forest, village, countryside. We provide a closer look of the results in the figure in
our supplementary data. To summarize, while the majority of trees are detected correctly in
most images and the shapes are effectively separated, there are still some errors in detecting
small or ambiguous trees.

5.3 Comparison to other Frameworks

Figure 6: Comparison of Prediction to the Figure 7: Comparison of Prediction to the
current version of DeepForest [10] and ver- current version of DeepForest [10] and ver-
sion 1.0.8 of Detectree2 [1] to measure Con- sion 1.0.8 of Detectree2 [1] depending on
fidence IoU to Measure Shape accuracy

We compare our model against the pretrained Detectree2 [ 1] and DeepForest [ 10] models
based on confidence in fig. 6 and shape accuracy fig. 7. Detectree2 has a low performance
across all areas, which is unsurprising since it is only trained on 3,797 manual annotations
of tropical forest. Therefore, there is a large disparity between training and evaluation data.
Qualitatively, many true positives produced by Detectree2 exhibit low confidence scores.
The DeepForest model is a lot more robust with respect to the prediction environment, so
that it generally results in better scores. This can be attributed to its larger and more diverse
pretraining set, which includes automatically generated crown annotations. Weinstein et
al. employ a self-supervised training strategy, using data generated by an unsupervised tree
detection algorithm applied to Lidar scans. DeepForest outperforms our model in forested
regions, while the performance is comparable in orchard areas. Our model shows superior
detection performance in urban and village settings. These differences align with the distri-
bution of the fine-tuning data. We only annotated city and village areas, whereas DeepForest
was fine-tuned with roughly the same number of annotations, but from orchards and forest
regions. In contrast to DeepForest, our primary contributions are: 1) demonstrating that
transfer learning enables generalization across shifts in the distribution of geographic do-
mains and 2) employing a simpler, unsupervised tree extraction algorithm only based on the
normalized Digital Surface Model (nDSM).

6 Conclusion

In this paper, we present a framework to infer images and extract precise tree shapes. We
leverage self-supervised transfer learning from forest areas using Voronoi segmentation to
improve the tree delineation in (sub-)urban areas. We also employ segmentation to refine
our training data in order to achieve more precise shapes. The evaluation shows that using
both approaches results in a significant increase in tree detection rate. Overall, we provide
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Models ‘ City Village Country Forest
Ours (Combined) | 0.65  0.61 0.43 0.30
w/o postprocess. | 0.41 0.40 0.29 0.24
w/o segmentation | 0.47 0.32 0.27 0.09
w/o pretraining 0.21 0.17 0.10 0.01

Models ‘ City Village Country Forest
Ours (Forest) 020  0.11 0.11 0.25
Ours (Urban) 0.51 0.38 0.36 0.21
Ours (Combined) | 0.65  0.61 0.43 0.30

Table 1: Fl1-scores at confidence 0.3 for ab-
lation variants of our pipeline.

Table 2: Fl-scores comparing forest, urban,
and combined models.

Models \ City Village Country Forest
Ours (Combined) | City Village Country Forest Ours (Combined) | 0.68  0.67 0.62 0.55
IoU=0.3 074  0.70 0.55 0.49 w/o segmentation | 0.65 0.60 0.57 0.53
TIoU=0.5 0.65 0.61 0.43 0.30 w/o postprocess. | 0.67 0.67 0.61 0.53
ToU=0.7 0.41 0.35 0.20 0.10 Ours (Urban) 0.65 0.61 0.58 0.54

Ours (Forest) 0.51 0.49 0.46 0.49

Table 3: Fl-scores for different IoU thresh-

olds at confidence 0.3.

Table 4: IoU scores at confidence 0.3,
threshold 0.3, for all models and ablations.

especially effective results with a focus on small villages and cities. We also provide several
models that can be used out-of-the-box or be fine-tuned for any purpose using the given
supplementary scripts.
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