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Abstract

Self-supervised learning has revolutionized representation learning in vision and lan-
guage, but remains underexplored for hyperspectral imagery (HSI), where the sequential
structure of spectral bands offers unique opportunities. In this work, we propose Spectral
Band Permutation Prediction (SpecBPP), a novel self-supervised learning framework that
leverages the inherent spectral continuity in HSI. Instead of reconstructing masked bands,
SpecBPP challenges a model to recover the correct order of shuffled spectral segments,
encouraging global spectral understanding. We implement a curriculum-based training
strategy that progressively increases permutation difficulty to manage the factorial com-
plexity of the permutation space. Applied to Soil Organic Carbon (SOC) estimation using
EnMAP satellite data, our method achieves state-of-the-art results, outperforming both
masked autoencoder (MAE) and joint-embedding predictive (JEPA) baselines. Fine-tuned
on limited labeled samples, our model yields an R2 of 0.9456, RMSE of 1.1053%, and
RPD of 4.19, significantly surpassing traditional and self-supervised benchmarks. Our
results demonstrate that spectral order prediction is a powerful pretext task for hyperspec-
tral understanding, opening new avenues for scientific representation learning in remote
sensing and beyond.

1 Introduction
Hyperspectral imagery (HSI) provides rich spectral information across hundreds of contiguous
wavelength bands, offering powerful capabilities for material characterization on Earth’s
surface. A vital application is estimating soil organic carbon (SOC) content, a key indicator of
soil health and a significant component of the global carbon cycle [33]. Despite the data-rich
nature of HSI, obtaining ground-truth SOC labels remains costly and labor-intensive, creating
a label-scarce domain where unlabeled hyperspectral data are plentiful but labeled examples
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are rare [38]. This gap motivates self-supervised learning approaches to leverage abundant
unlabeled HSI for robust representation learning.

Self-supervised learning (SSL) has transformed representation learning by devising pretext
tasks that require no manual labels. Current approaches include masked image modeling,
where models reconstruct masked regions [25], and contrastive/joint embedding methods
that learn invariant representations [2, 3, 10]. However, applying these techniques directly to
hyperspectral data has limitations: masked reconstruction primarily captures local spectral
correlations, while contrastive methods require careful augmentation design for HSI. Unlike
RGB images with well-established augmentations (color jitter, cropping), HSI augmentations
must preserve spectral fidelity and avoid disrupting absorption features critical for material
identification [26, 40]. Existing methods fail to explicitly leverage the sequential structure [20]
of hyperspectral data, where bands follow the electromagnetic spectrum’s natural ordering
and exhibit strong correlations with adjacent wavelengths.

We propose SpecBPP, a novel self-supervised approach tailored to hyperspectral data.
SpecBPP treats each spectrum as a sequence, partitioning it down into multiple contiguous
segments, shuffling them, and training the model to predict the correct original order. This
"spectral jigsaw puzzle" requires the model to learn the natural ordering [42] of wavelength
regions and capture long-range dependencies across the spectrum. Unlike masked autoencod-
ing, which focuses on local smoothness, our permutation prediction task encourages global
understanding of spectral signatures, requiring networks to identify and place characteristic
absorption features in the appropriate spectral context.

To address the factorial growth of possible permutations, we implement a curriculum
learning strategy [4, 23, 43], that begins with simpler permutation tasks (fewer segments)
and progressively increases complexity as the model learns. This staged approach helps the
network gradually master spectral ordering from coarse to fine-grained patterns, making the
learning process more efficient and stable.

Empirically, SpecBPP provides outstanding results for SOC prediction. Using our self-
supervised task to pretrain a hyperspectral encoder on unlabeled HSI data and fine-tuning
on limited SOC-labeled samples, we achieve representations that significantly outperform
conventional SSL methods and supervised baselines, particularly in low-label scenarios.
Our contributions include (1) a self-supervised framework that uses spectral ordering for
hyperspectral representation learning, (2) robust SOC estimation with R2 of 0.9456, and (3)
improved generalization for ML and environmental science applications.

2 Related Work
Self-supervised learning has emerged as a powerful paradigm for learning visual features from
unlabeled data. Contrastive approaches like SimCLR [10] and MoCo [24] learn representa-
tions by maximizing agreement between augmented views of the same image while distancing
different images. Negative-free methods such as BYOL [21] and SimSiam [11] mitigate
representational collapse using asymmetric networks and stop-gradient operations. Another
successful approach is masked prediction: Masked Autoencoders (MAE) [25] reconstruct
randomly masked image patches, forcing models to capture contextual information. More
recently, I-JEPA [2] operates in feature space by predicting representations of masked regions,
avoiding pixel-level reconstruction while maintaining competitive performance.

Several self-supervised methods leverage intrinsic data ordering as a supervisory signal.
In computer vision, solving jigsaw puzzles [37] and predicting relative positions of image
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regions [16] enable learning of spatial context. For sequential data like video, models
learn temporal structure by verifying frame order [36] or detecting shuffled sequences [17].
Similarly, NLP models like BERT [15] and XLNet [50] incorporate order-based pretraining
tasks such as next-sentence prediction and permutation language modeling. These methods
share a common principle: shuffling natural data ordering to create self-supervised tasks
that require understanding of high-level structure. Our work extends this paradigm to the
spectral dimension of hyperspectral imagery, leveraging the natural ordering [42] of the
electromagnetic spectrum.

Recent work has begun adapting self-supervised techniques to hyperspectral image (HSI)
analysis, where labeled data is often scarce. Contrastive learning approaches [22, 28, 30, 51]
for HSI define positive pairs through spectral and spatial augmentations, while masked
modeling methods [32, 34, 35, 48] reconstruct masked portions of the hyperspectral cube.
Hybrid approaches combine contrastive and reconstruction objectives to leverage the unique
characteristics of HSI data [6, 7, 31]. These methods explore various pretext tasks from
spectral clustering to band prediction, aimed at learning transferable spectral-spatial features.
Our approach contributes to this emerging field by introducing spectral permutation prediction,
which explicitly leverages the sequential structure [20] of spectral bands in a way previous
HSI self-supervised methods have not explored.

Soil Organic Carbon (SOC) estimation using hyperspectral data has traditionally relied on
supervised calibration models trained on field-collected samples with laboratory-measured
SOC values. Studies have demonstrated the feasibility of mapping SOC from proximal,
airborne, and satellite hyperspectral imagery [44, 45]. Traditional approaches use methods
like partial least squares regression (PLSR) [19], while recent work explores spaceborne hy-
perspectral sensors like EnMAP [5] and PRISMA [39] for regional SOC mapping. Advanced
techniques including deep learning have shown promise [13], but supervised approaches
remain limited by the need for extensive soil sampling and struggle with generalization
across diverse soil conditions. This creates motivation for self-supervised methods that can
leverage unlabeled hyperspectral data to learn generalizable spectral features. Our SpecBPP
approach addresses this need by learning soil-relevant representations through a novel spectral
permutation task, bridging hyperspectral self-supervised learning and practical soil property
estimation.

3 Spectral Band Permutation Prediction (SpecBPP)
We introduce Spectral Band Permutation Prediction (SpecBPP), a novel self-supervised
framework that leverages the sequential structure of electromagnetic spectra [20, 42]. This sec-
tion formalizes our task definition, details the model architecture, specifies training objectives,
and explains our curriculum learning strategy for managing permutation complexity.

3.1 Task Definition
We formalize Spectral Band Permutation Prediction as a self-supervised ordering task.
Let x ∈ RB be a spectral signature with B bands (EnMAP: B = 224). We partition x into N
disjoint segments x(1),x(2), . . . ,x(N), each spanning ℓ= B/N bands. A random permutation
π ∈ SN (where SN denotes the symmetric group of all permutations of N elements) reorders
these segments to produce a permuted signature:

x̂ = π(x) =
[
x(π(1)), x(π(2)), . . . , x(π(N))

]
(1)
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Figure 1: Overview of the SpecBPP pretraining–finetuning pipeline. Pretraining (left): An
input spectrum x is divided into N contiguous segments and randomly permuted by π to form
π(x). The encoder Eθ produces latent representation z, which feeds into a prediction head
that outputs probability matrix P over segment positions. The model predicts the inverse
permutation π−1 to restore original ordering. Loss is cross-entropy: L=− 1

N ∑
N
i=1 logPi,π−1(i),

where π−1(i) is the original position of the segment at shuffled position i. Training follows
a curriculum strategy increasing segment count (N:3→8) with accuracy-gated progression.
Finetuning (right): The pretrained encoder weights are transferred and combined with a
regression head for SOC prediction, optimized via MSE loss.

where π(i) gives the original segment index at position i in x̂. Since π is a bijection, its inverse
π−1 recovers the original ordering: π−1(x̂) = x.

In pretraining, the model receives x̂ and must predict π−1 to reconstruct the original
sequence. This prediction corresponds to one of N! possible permutations. By completing
this task, the model learns the natural spectral ordering and continuity characteristics found in
real hyperspectral signatures.

3.2 Model Architecture

The SpecBPP architecture comprises an encoder network that extracts features from permuted
spectral data and a prediction head that estimates the inverse permutation, as illustrated in
Fig. 1.
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3.2.1 Encoder Network

Our encoder Eθ processes the permuted spectral signature x̂ to produce a latent representation
z = Eθ (x̂) ∈ Rd , where d is the embedding dimension. As shown in Fig. 1(left), the encoder
consists of three principal components working in concert:

The Spectral Transformer Block employs a multi-head self-attention mechanism to
capture dependencies across spectral bands [27, 47]. Formally, given input features F ∈
RH×W×B (for spatial-spectral data with height H and width W ), the self-attention operation is
defined as:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V (2)

where Q, K, and V are query, key, and value projections. To incorporate domain knowledge
about spectral relationships, we introduce a band weighting mechanism α ∈RB that adaptively
emphasizes spectral regions known to correlate with soil properties. The mechanism applies
element-wise multiplication to scale reflectance values by band importance:

F ′ = F ⊙α (3)

where ⊙ represents element-wise multiplication broadcast along the spatial dimensions.
The Multi-Scale Spatial Block captures spatial context at multiple scales through efficient
depthwise separable convolutions [12, 29]. For each scale s ∈ {3,5,7} (representing kernel
sizes), we compute:

Fs = DSConvs(F ′) = PWConv(DWConvs(F ′)) (4)

where DWConvs is a depthwise convolution with kernel size s, and PWConv is a pointwise
(1×1) convolution. The multi-scale features are combined via:

FMS = Concat(F3,F5,F7)W +b (5)

where W and b are learnable parameters.
The Dual Attention Mechanism integrates spatial and channel attention to focus on

informative regions [18, 49]. The channel attention αc and spatial attention αs are computed
as:

αc = σ(W2δ (W1GAP(FMS))) (6)
αs = σ( f7×7(MaxPool(FMS),AvgPool(FMS))) (7)

where σ is the sigmoid function, δ is ReLU, GAP is global average pooling, and f7×7 is a
7×7 convolution. The final encoder output integrates these attention mechanisms:

z = GAP(FMS ⊙αc ⊙αs). (8)

3.2.2 Permutation Prediction Head

The prediction head maps encoded representation z to a distribution over possible inverse
permutations. To handle the factorial growth of permutation space (N!), we adopt a factorized
approach treating prediction as N separate classification problems [1, 14].

The head outputs an N ×N matrix P, where Pi j represents the probability that segment at
position i originated from position j:

P = softmax(Wpz+bp) (9)
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where Wp ∈ RN×N×d , bp ∈ RN×N are learnable parameters with softmax applied row-wise.
The predicted inverse permutation is:

π̂
−1(i) = argmax

j∈{1,2,...,N}
Pi j. (10)

This approach efficiently decomposes the exponentially large permutation space into a
tractable form.

3.3 Training Objectives
We train the model to minimize the cross-entropy loss between the predicted and true inverse
permutation. Given a permuted spectrum x̂ = π(x) and its inverse permutation π−1, the model
predicts which original segment belongs at each position. π−1(i) represents the original
position of the segment currently at shuffled position i, which is the ground truth target for
our prediction. The correct segment index for position i in the sorted spectrum is π−1(i). For
example, if a segment originally at position 3 is shuffled to position 1, then π−1(1) = 3, and
the model should output high probability P1,3. The loss is:

L(x̂,π−1) =− 1
N

N

∑
i=1

logPi,π−1(i) (11)

where Pi,π−1(i) is the predicted probability that the segment at position i originated from
position π−1(i).

This objective forces the model to learn the spectral continuity patterns necessary to
unscramble the permuted segments. By correctly identifying the original positions, the
model must develop representations that capture physically meaningful relationships between
different regions of the electromagnetic spectrum.

3.4 Curriculum Learning Strategy
To address the factorial explosion of permutation space (N! possible permutations), we imple-
ment a curriculum learning strategy along two dimensions: segment count and permutation
complexity.

For segment count progression, we define an adaptive six-phase curriculum from 3 to 8
segments:

Nt = 3+
5

∑
i=1

1
(
val_acc ≥ αi

)
(12)

where 1(·) is the indicator function and αi are validation accuracy thresholds (99%). This en-
sures mastery at each level before progressing to permutation spaces of increasing cardinality:
6, 24, 120, 720, 5 040, and 40 320.

Within each phase, we control permutation difficulty using function φ(π) = ∑
N
i=1 |i−π(i)|

that measures distance from identity [41]. We bias sampling toward "easier" permutations
initially, gradually increasing complexity:

p(π) ∝ exp
(
−φ(π)

Ts(t)

)
(13)

where Ts(t) increases with training progress.
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Empirically, direct training with N = 8 fails to converge, while our curriculum achieves
100% validation accuracy for N ≤ 7 and 84.2% for N = 8, demonstrating its effectiveness for
stable learning of spectral structure.

4 Experiments

We evaluate our SpecBPP approach on the task of Soil Organic Carbon (SOC) estimation using
hyperspectral imagery. This section describes our experimental setup, presents comparative
results against state-of-the-art methods, and provides analysis of the learned representations.

4.1 Experimental Setup

Datasets:
We use EnMAP satellite imagery (224 bands, 420-2450 nm, 30m resolution) [8, 46]. For
pretraining, we extract 196 875 non-overlapping 64×64 patches from 1 000 scenes. For fine-
tuning, we use patches corresponding to 1 540 soil samples with laboratory-measured SOC
(0.5-23.8%), split into training (70%), validation (15%), and test (15%) sets with stratified
sampling.
Baseline Methods:
We compare against: (1) traditional methods like Partial Least Squares Regression (PLSR)
[19], Random Forest (RF), and Support Vector Regression (SVR); (2) Supervised: identical
architecture trained only on labeled data; (3) MAE: masked autoencoder for HSI [25]; (4)
I-JEPA: joint-embedding architecture [2]; and (5) SimCLR: contrastive learning [10].
Evaluation Metrics:
We use standard regression metrics with explicit formulations for clarity. The coefficient of
determination measures explained variance: R2 = 1−∑i(yi − ŷi)

2/∑i(yi − ȳ)2. Root mean

square error quantifies prediction magnitude: RMSE =
√

1
n ∑i(yi − ŷi)2. Mean absolute

error provides robust error measurement: MAE = 1
n ∑i |yi − ŷi|. The ratio of performance to

deviation offers scale-independent assessment: RPD = SD(y)/RMSE, where SD(y) is the
standard deviation of reference values. RPD values above 3.0 indicate excellent performance
for agricultural applications [9].
Implementation:
Models are implemented in PyTorch and trained on A100 GPUs with batch size 256. We
train SpecBPP for 200 epochs (SGD, initial lr=1×10−3, cosine decay) and fine-tune for 150
epochs (lr=5×10−4) with early stopping on validation R2.

4.2 Results

Pretraining Performance:
Table 1 compares permutation prediction accuracy between direct training and our curriculum
strategy across different segment counts. Our curriculum approach achieves 100% accuracy
on increasingly complex tasks (3→7 segments) by progressively advancing through segment
counts upon mastery. For the most challenging case with 8 segments (40,320 possible
permutations), the curriculum strategy still maintains strong performance with 84.2% accuracy,
significantly outperforming direct training which only achieves 4.9% after the same number
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Table 1: Permutation prediction accuracy (%) on validation data for different segment counts
and training strategies.

Training Strategy Number of Segments (N)

3 4 5 6 7 8

Direct (Epoch 30) 100.0 94.8 67.4 35.7 9.2 0.3
Direct (Epoch 100) 100.0 100.0 99.5 70.2 32.5 1.7
Direct (Epoch 200) 100.0 100.0 100.0 87.6 68.3 4.9

Curriculum (Epoch 30) 100.0 - - - - -
Curriculum (Epoch 50) - 100.0 - - - -
Curriculum (Epoch 90) - - 100.0 - - -

Curriculum (Epoch 140) - - - 100.0 - -
Curriculum (Epoch 170) - - - - 100.0 -
Curriculum (Epoch 200) - - - - - 84.2

Figure 2: Each panel shows: (top) the original spectral signature with 7 segments, (middle) the
shuffled signature after permutation, and (bottom) the reconstructed signature after applying
the predicted inverse permutation. The table shows the true vs. predicted segment positions.

of epochs. This performance gap validates the effectiveness of our curriculum approach for
complex permutation tasks.
Figure 2 demonstrates the spectral permutation prediction process. An original spectral signa-
ture with 7 segments (top) is randomly shuffled (middle), disrupting characteristic absorption
features. The model correctly predicts the inverse permutation, reconstructing the original
signature (bottom) with 100% segment placement accuracy. The preservation of spectral
features like the prominent absorption peak around band 100 and the characteristic shape
transitions between segments indicates that the model has learned to recognize and spatially
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Table 2: SOC estimation performance comparison. Bold values indicate best performance
Method Pre-train R2 (↑) RMSE (%) (↓) MAE (%) (↓) RPD (↑)

PLSR ✗ 0.4823 3.8126 2.9843 1.3903
RF ✗ 0.5010 2.7944 2.0871 1.4156
SVR ✗ 0.4952 2.8103 2.1067 1.3794

Supervised ✗ 0.6231 2.3792 1.3654 2.2276
MAE ✓ 0.8145 1.7218 1.0354 3.0783
I-JEPA ✓ 0.8630 1.6543 0.9876 3.2037
SimCLR ✓ 0.8073 1.7864 1.0892 2.9670

SpecBPP (N = 3) ✓ 0.6028 2.5629 1.9203 1.6908
SpecBPP (N = 4) ✓ 0.7236 2.1347 1.4829 2.4651
SpecBPP (N = 5) ✓ 0.8345 1.6694 1.0147 3.1045
SpecBPP (N = 6) ✓ 0.8978 1.3421 0.8576 3.7329
SpecBPP (N = 7) ✓ 0.9456 1.1053 0.7394 4.1886
SpecBPP (N = 8) ✓ 0.9033 1.2987 0.8102 3.8452

Table 3: Ablation study of key components in SpecBPP (N = 7).
Model Configuration R2 (↑) RMSE (%) (↓) RPD (↑)

SpecBPP (Full) 0.9456 1.1053 4.1886
SpecBPP w/o CL 0.9021 1.6632 3.1865
SpecBPP w/o SW 0.9318 1.3892 3.8151
SpecBPP w/o DA 0.9402 1.2147 3.8223

organize distinct spectral patterns rather than relying on low-level statistical correlations. This
example illustrates how SpecBPP forces the network to develop a global understanding of
spectral signatures that extends beyond local band-to-band relationships.
SOC Estimation Performance:
Table 2 presents SOC estimation results after fine-tuning. SpecBPP performance improves
consistently with segment count up to N = 7 (R2=0.9456, RMSE=1.1053%, MAE=0.7394%,
RPD=4.1886), which significantly outperforms all baselines. Notably, performance decreases
at N = 8 (R2=0.9033), suggesting an optimal segment count beyond which the factorial
complexity becomes prohibitive.
Ablation Studies:
Table 3 presents ablation results for key components of SpecBPP. Removing curriculum
learning (CL) produces the largest performance drop (R2 decreases by 0.0435), confirming
its crucial role in managing permutation complexity and demonstrating that this training
strategy is a fundamental enabler rather than merely a convergence accelerator. The moderate
impact of spectral band weighting (SW) removal (R2 decreases to 0.9318) and minimal
effect of dual attention (DA) removal (R2=0.9402) indicate that while these components
provide measurable benefits, SpecBPP’s superior performance primarily derives from the
novel spectral permutation prediction objective combined with curriculum learning.

5 Conclusion
We have presented Spectral Band Permutation Prediction (SpecBPP), a novel self-supervised
framework that leverages the natural ordering of hyperspectral bands to learn globally co-
herent spectral representations. Our curriculum learning strategy overcomes the factorial
complexity of segment ordering, yielding rich embeddings without manual labels. When
fine-tuned on limited soil organic carbon samples, our approach achieves state-of-the-art
performance (R2 = 0.9456, RMSE = 1.1053%, RPD = 4.19), substantially surpassing masked
autoencoders, contrastive methods, and traditional regressors. SpecBPP opens new avenues
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for self-supervised learning in remote sensing by explicitly encoding spectral continuity and
long-range dependencies.

5.1 Limitations and Future Work
Despite achieving state-of-the-art performance, SpecBPP has several limitations that present
opportunities for future development. The factorial growth of permutation space (N!) imposes
computational constraints, with accuracy decreasing from 100% at N = 7 to 84.2% at N = 8,
though our curriculum learning strategy successfully manages this complexity within the
effective operating range. Our uniform spectral segmentation approach, while ensuring
domain-agnostic applicability, may inadvertently split meaningful absorption features across
segment boundaries, suggesting that adaptive segmentation strategies could further improve
performance.

Our validation focuses on EnMAP imagery to establish the fundamental effectiveness of
spectral permutation prediction within a consistent sensor framework, avoiding confounding
variables that would obscure the core methodological contribution. While this rigorous
evaluation demonstrates the robustness of our approach, several extensions merit investigation.
First, explicit wavelength-based positional encoding (analogous to transformer positional
encodings) could enhance cross-sensor transfer by enabling interpolation of learned features
across different spectral configurations. Second, ordinal regression formulations that exploit
natural spectral ordering to penalize nearby position errors less than distant ones could
improve sample efficiency, particularly for larger segment counts. Third, adaptive spectral
segmentation aligned with physical absorption features, rather than uniform division, may
prevent splitting meaningful spectral patterns across boundaries.

Acknowledgement: The authors would like to thank Abayomi Awobukun for funding this
research work.
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