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Abstract

Persistent Scatterer InSAR (PS–InSAR) yields a genuine three–dimensional point
cloud: each scatterer is identified by fixed coordinates (x,y,z) and an accompanying
displacement sequence Du1 . . .DuT . Most existing forecasting studies treat every series
in isolation and, as a result, discard the spatial context that governs tectonic, volcanic,
and anthropogenic deformation. We present PointNet–PSI, a spatio–temporal model
that couples a PointNet–style point cloud encoder with MOMENT, a recent foundation
model for general time–series prediction. The permutation–invariant PointNet front–
end ingests the unordered PS–InSAR cloud, compresses local geometry and kinematic
similarity into latent descriptors, then concatenates these descriptors with the raw dis-
placement history. The enriched embeddings are passed to MOMENT’s transformer
backbone, which produces multi–step forecasts for every scatterer. In this hybrid design
the network learns where through spatial aggregation of neighbouring points and when

through MOMENT’s long–range temporal attention, while retaining the large recep-
tive field and data–efficient pre–training advantages of the base model. We validate the
approach on the European Ground Motion Service Basic 2019–2023 vertical–velocity
product. We adopt a hindcast protocol: observations from 20192020 serve as context,
and all 60 samples of 2021 form the strictly held-out forecast horizon. Compared with
strong per–point sequence models (LSTM, Temporal Fusion Transformer, and vanilla
MOMENT) and naive PointNet, PointNet–PSI reduces the test RMSE by about 17%.

1 Introduction
Interferometric Synthetic Aperture Radar (InSAR) has revolutionised large-scale geodetic
monitoring by providing millimetre-precision measurements of surface displacement irre-
spective of daylight or cloud cover. Among the available processing chains, Persistent Scat-

terer InSAR (PS–InSAR) [9, 15] extracts coherent phase histories for radar-bright targets
that remain stable over hundreds of satellite passes. Typical European constellations deliver
O(106) scatterers per orbit, each characterised by fixed spatial coordinates (x,y,z) and a dis-
placement time-series Du1, . . . ,DuT . Recent public releases such as the European Ground

Motion Service (EGMS) Basic 2019–2023 product exposes continent-wide ground-motion
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Figure 1: Overview of our Method. Given a target PS–InSAR displacement series and those
of its nearby scatterers, PointNet [27] distils the neighbours into a permutation–invariant
spatial latent vector si. This spatial context is fused with the target history and fed to a fine-
tuned time-series foundation model called MOMENT [12], enabling joint spatial-temporal
reasoning for multi-step ground-motion forecasting.

archives containing more than twenty million trajectories, enabling unprecedented insight
into tectonic creep, volcanic unrest, groundwater draw-down and anthropogenic subsidence.
For critical infrastructure and densely populated basins the next logical step is forecasting:
predicting how these displacements will evolve in the near future to enable early-warning
systems and risk-informed urban-planning.

The majority of PS–InSAR forecasting studies feed each displacement series into an in-
dependent LSTM or GRU [11, 36, 50, 51], achieving reasonable short-term accuracy but dis-

carding the spatial correlations that govern many geophysical processes. Consequently, the
predicted fields often appear spatially noisy, violating the physical continuity expected along
fault planes or within subsidence bowls. For Small Baseline Subset (SBAS) imagery, which
is sampled on a regular grid, spatio-temporal Transformer hybrids have recently proven ef-
fective [52], and the Koopman operator [19]-inspired Auto Encoder [31] is also effective for
forecasting future displacement of each pixel of SBAS time series image [30]. In contrast,
PS–InSAR forms an unordered point cloud, rendering pixel-based encoders inapplicable. A
natural candidate for such unstructured data is PointNet [26], whose permutation-invariant
multilayer perceptrons can learn geometry-aware descriptors directly from 3-D point clouds.
Point-cloud networks have already demonstrated superior spatial feature extraction of time
series data for per-point full-waveform LiDAR classification tasks [32, 33, 34], suggesting
that analogous gains are attainable for PS–InSAR forecasting once spatial context is properly
exploited.

The temporal dimension of PS–InSAR forecasting has reaped the benefits of the rapid
evolution of sequence modelling. Recurrent networks have largely been superseded by ef-
ficient Transformer variants, and, most importantly, large-scale pre-training on hundreds of
millions of heterogeneous series has yielded a new class of foundation models. Leveraging
hierarchical attention, masked-reconstruction objectives, and autoregressive transfer from
large language models, these models now define the state of the art in downstream tasks
such as forecasting, anomaly detection, and classification. However, input representation
for foundation models is confined to a tensor of shape [ channels⇥time]. When deployed
on PS–InSAR data, they must still process each displacement series independently, thereby
discarding the spatial correlations that govern crustal deformation.

We address this limitation with PointNet-PSI, the first architecture that unifies a PointNet-
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style point cloud encoder with the Transformer backbone of MOMENT [12]. The permutation-
invariant PointNet front end ingests the unordered PS–InSAR point cloud, encodes local
geometry and kinematic similarity into compact latent vectors, and concatenates these de-
scriptors with every targets displacement history. The enriched embeddings are then propa-
gated through MOMENTs hierarchical attention stack, enabling the network to learn where
through spatial context and when through long-range temporal dynamics, while preserving
the data-efficient pre-training and billion-sample scalability of the base model.

2 Related Study

2.1 Time–series Prediction
RNN/LSTM/Transformer. Forecasting dynamical systems with neural networks has been
investigated for decades [3, 4]. Long Short Term Memory (LSTM) [14] and Gated Recurrent
Units (GRU) [7] improved upon vanilla RNNs, but still suffer from vanishing/exploding gra-
dients [5]. Mitigation strategies span stability analysis [24], unitary weight matrices [2], and
antisymmetric parameterisations [6], often trading expressive power for numerical robust-
ness [18]. Physics guided RNNs [16], Hamiltonian neural networks [13], and neural ODE
variants embed conservation laws or differential equation structure to improve interpretabil-
ity and sample efficiency, yet remain difficult to scale beyond modest sequence lengths.
Transformer-based forecasters [25, 55, 56] address long-range dependencies through sparse
or patchwise attention, but incur quadratic memory in input length and treat each channel
independently, thereby ignoring rich spatial context present in geospatial data products like
PS–InSAR.

Foundation Models. A new generation of large pre-trained time series foundation mod-
els has recently emerged. Chronos [1] employs masked reconstruction and contrastive ob-
jectives to learn universal temporal representations, while Lag-Llama (ServiceNow) adapts
LLaMA weights to autoregressive forecasting. Prophet [39] remains a strong classical base-
line that decomposes series into trend, seasonality and holiday effects. MOMENT [12] scales
transformer forecasting to the billion-sample regime via hierarchical attention; Moirai [43]
hybridises diffusion priors with causal convolution heads; TimeGPT-1 [10] and TimesFM [8]
further push parameter counts and training corpora, delivering competitive zero-shot fore-
casts across hundreds of benchmarks. Despite their versatility, all of these models ingest se-
quences of the form [channels⇥ time] and therefore cannot exploit the permutation-invariant
point cloud nature of PS–InSAR. Our work closes this gap by augmenting MOMENT with
a PointNet–style spatial encoder, enabling simultaneous learning of spatial and temporal de-
pendencies within a single foundation model framework.

2.2 Deep learning for 3D Point Clouds
Projection-based approaches. Early attempts to reuse mature image and voxel CNNs
map point sets onto regular domains, either as multi-view depth or intensity images [17, 37]
or as dense voxels [23, 57]. While these projections permit classical convolutions, they
inevitably sacrifice geometric fidelity: fine-scale details are smeared by discretisation and
quantisation, and memory footprints scale cubically with resolution.
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MLP-based approaches. PointNet [26] inaugurated a contrasting philosophy: operate di-
rectly on the raw, unordered coordinates. A shared multilayer perceptron followed by a
symmetric pooling operator yields permutation invariance without resorting to hand-crafted
neighbourhoods. PointNet++ [28] and its successors introduce hierarchical sampling and
local shared MLPs, narrowing the gap to convolution while retaining simplicity [20, 53].
The absence of heavy kernel construction makes these networks lightweight and highly par-
allelisable.

Convolution-based approaches. A separate line of work strives to endow point clouds
with true convolution. Kernel Point Convolution [40] and IPA [22] define continuous ker-
nels anchored to learnable points; PointCNN [21] and PointConv [44] generate filters dy-
namically from local coordinates. Such designs capture local structures more explicitly than
MLPs, but at the cost of elaborate kernel parametrisations and higher computational over-
head.

Edge-aware approaches. EdgeConv [42] reinterprets convolution as message passing along
edges in a dynamic k-NN graph, stimulating a host of derivatives that refine neighbourhood
relationships or integrate attention [35, 41, 45, 46, 47, 48, 49, 54]. Although these methods
enrich geometric reasoning, the interaction between local edge cues and global context is
often mediated by additional MLPs whose influence is hard to analyse rigorously, and con-
verting rich edge descriptors to normalised attention weights can dilute structural signals.

Because our goal is to couple spatial encoding with the billion-sample scalability of the
transformer backbone in MOMENT, we deliberately adopt the original, parameter-efficient
PointNet formulation. Its shared MLPs furnish strong geometry-aware descriptors with neg-
ligible overhead, making them an ideal front-end for a large time-series foundation model.

3 Proposed Method

Our goal is to predict the future displacement ût+1:t+t for every PS–InSAR scatterer points,
given its past displacement dt�`+1:t 2 R` and the neighbour points of displacement data. To
exploit both spatial and temporal information, we propose the PointNet-PSI, which unifies
a PointNet style point cloud encoder with the MOMENT time-series backbone. Figure 2
summarises the architecture.

3.1 PointNet-PSI

3.1.1 PointNet–based Spatial Feature Extraction

For a target scatterer i with Cartesian 3D coordinates pi = (xi,yi,zi) we first collect all neigh-
bouring scatterers that fall inside a fixed search radius1

r = 200 m,

Ni =
�

j

�� kp j �pik2 < r, j 6= i
 
.

1At the 25 m ground sampling of EGMS, a radius of r = 200 m encloses at most |Ni| ⇡ 64 scatterers under
uniform spacing.
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Neighbour representation. Let ` be the length of the context window in time steps that
the temporal backbone receives (Section 3.1.2 fixes ` = 120). For every neighbour j 2 Ni

we concatenate its 3-D position with its normalised displacement history d( j)
t�`+1:t 2 R`:

x j =
⇥
x j, y j, z j, d( j)

t�`+1:t
⇤
2 R3+`.

Shared MLP and symmetric pooling. PS–InSAR neighbours form an unordered set. We
therefore adopt a permutation-invariant set encoder (shared MLP + symmetric pooling) to
summarise local geometry and kinematic similarity without constructing a graph at every
step. This late-fusion summary allows the temporal backbone to retain the input statistics it
was pre-trained on, avoiding distribution shifts that arise when spatial features are injected
into the encoder tokens.

Following PointNet [26] we apply a shared multilayer perceptron fq : R3+`
�!Rd ,

where d is the latent feature dimension (e.g., d = 128), to every x j and then aggregate the
unordered set with a channel-wise Max Pooling operation(MAX):

si = MAX
j2Ni

fq (x j) 2 Rd .

The resulting spatial latent vector si is a permutation-invariant descriptor that captures both
the local geometry of the point cloud and the kinematic similarity of the surrounding dis-
placement traces. It is subsequently fused with MOMENTs temporal representation in the
forecasting head (Section 3.1.2).

3.1.2 MOMENT–based Temporal Forecasting

Background on MOMENT. Massive Online Multiscale Encoder for Time-series (MO-
MENT) is a foundation model pre-trained on 900M unlabelled sequences drawn from fi-
nance, energy, meteorology and industrial sensors. Let C be the number of input channels, T

the (padded) context length (§4.1), and D the hidden dimension of the transformer backbone
(D=768 in the moment-base checkpoint). MOMENT introduces two architectural ideas
that make transformer forecasting practical at this scale.

1. Patch tokenisation. Rather than operating on raw time steps, MOMENT groups the
sequence into fixed-length patches pk 2RC⇥Lpatch with Lpatch=8 by default. Each patch
is linearly projected to a D-dimensional token, reducing the effective sequence length
by a factor Lpatch and hence the quadratic cost of self-attention.

2. Hierarchical attention. A pyramid of J transformer stages (J=4 in our model) pro-
cesses the tokens at progressively coarser resolutions, while a global memory attends
to every stage. The resulting receptive field scales as O(N logN) with N = T/Lpatch
tokens, capturing both short-range fluctuations and multi-year trends.

Pre-training combines a masked-patch objective with a next-series contrastive task, pro-
ducing representations that transfer robustly to downstream domains such as PS–InSAR.

Patch Embedding. After REVIN normalisation, the displacement context is partitioned
into N = T/Lpatch non-overlapping patches. Each flattened patch xt 2 RC Lpatch is projected
to the model dimension

vt = Wpatchxt + bpatch 2 RD,



6 SHINOHARA AND SAOMOTO: SPATIO-TEMPORAL FORECASTING OF PS–INSAR

augmented with sinusoidal positional encodings, and passed through a 0.1 dropout layer.
The resulting sequence {vt}

N

t=1 forms the input to the encoder.

Hierarchical Transformer Encoder. MOMENT replaces vanilla ViT blocks with a T5-
style stack. Each of the L=24 blocks contains multi-head self-attention (16 heads, 64-d
sub-spaces) with learned relative-position biases, followed by a gated GELU feed-forward
network of width 2.75D. In the upper half of the stack, keys and values are computed on a
sub-sampled token stream, reducing both memory and run-time to O(N logN) while retain-
ing a wide receptive field. All sub-layers are preceded by layer normalisation and followed
by 0.1 dropout.

Forecasting Head. The encoder outputs H 2RN⇥D. We flatten H along the temporal axis,
apply 0.1 dropout, and obtain the t-step forecast via

ût+1:t+t = Whead Flatten(H) + bhead 2 Rt ,

where t=60 in all experiments. When PointNet conditioning is enabled, the spatial latent si

is concatenated only at the head stage. This late fusion preserves the pre-trained encoder’s
token distribution and delegates spatial–temporal fusion to the head.

3.2 Optimisation
The entire network is trained end-to-end with the mean-squared error(MSE) loss

L =
1

St

S

Â
i=1

��û(i)
t+1:t+t �u(i)

t+1:t+t
��2

2, (1)

where S denotes the mini-batch size and t is the prediction horizon (§4.1).2 Optimisation
uses AdamW with b1 = 0.9, b2 = 0.95 and a cosine learning-rate schedule. Training is
performed in mixed precision (bfloat16) and the total gradient g is clipped to kgk2  5 to
prevent an explosion. We monitor the validation RMSE after each epoch and store a check-

point only when this metric improves, ensuring that the best-performing model is retained for
final evaluation. All symbols appearing in EQ (1) have been introduced: S (mini-batch size),
t (forecast horizon), t (index of the last context step), and û and u (forecast and ground-truth
trajectories).

4 Experimental Results

4.1 Dataset
We use the publicly available European Ground Motion Service 2019–2023 product [29],
which provides annual vertical displacement rates for the entire continent. To keep the study
tractable yet geophysically diverse, we select tiles covering volcanic and anthropogenic de-
formation areas. After filtering out short or corrupted series, everyone expressed as a 180-
length displacement trace (2019:01 ! 2021:12).

2Throughout, û and u are the predicted and true displacement sequences, respectively.
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Figure 2: PointNet-PSI architecture. The target PS-InSAR displacement track xi, together
with its spatial neighbourhood tracks x j, . . . , xm, is first processed by a PointNet–based spa-
tial encoder, which compresses the local geometry and kinematics into a spatial latent vector
si. The raw displacement history of the target point is then fed to the MOMENT forecaster.
The forecasting head fuses the temporal representation with si and outputs the t-step dis-
placement forecast (ût+1:t+t ).

Following the geophysical convention of hindcast evaluation, we divide the time axis,
not the spatial domain: observations from 2019–2020 (2⇥ 60 acquisitions, ESA Sentinel-1
revisits each track roughly every six days; after PS processing the average tile still yields ⇠
60 valid frames/year.) form the context, while all 60 frames of 2021 constitute the prediction
horizon. Series are randomly assigned to 70% training, 15% validation, and 15% blind test
sets.

Every context displacement data is zero-padded on the right to 256 steps–the fixed in-
put length required by MOMENT–and a per-split Z-score3 normalisation is applied using
training statistics only.

4.2 Results and Discussion
Quantitative comparison. Table 1 lists root-mean-square error (RMSE) on the blind-test
year 2021. PointNet-PSI delivers the lowest errors, outperforming all per-point baselines
(LSTM, Informer, vanilla MOMENT) as well as graph-based variants. Vanilla MOMENT

already beats LSTM and Informer, underscoring the strength of recent foundation models for
generic time-series forecasting; its large-scale pre-training and hierarchical attention give it a
clear advantage even when spatial cues are absent. Nevertheless, stripping away the PointNet
block and feeding zero-padded tracks directly to MOMENT raises the RMSE to 3.30 mm and
yields spatially noisy displacement fields, confirming that explicit spatial learning remains
essential. PointNet without MOMENT baseline recovered part of the lost accuracy but still
trails PointNet-PSI, highlighting the benefit of our time series foundation model.

3Z-score normalisation: a
0 = (a�µ)/s computed per split using training statistics.
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Figure 3: Dataset. (a) Spatial coverage of the 100 km Œ 100 km EGMS PS-InSAR tiles
used in this work (red outlines, blue centroids). The selected data captures a broad range of
tectonic, volcanic and anthropogenic deformation. (b) Irregularly scattered point cloud-like
vertical-velocity map (mm yr�1, red = subsidence, blue = uplift). (c) Example displacement
trace. The first 120 frames (2019–2020) serve as context for the model, and the next 60
frames (2021) are withheld for forecasting. ©OpenStreetMap contributors. ©Carto.

Model RMSE [mm] Foundation Model Spatial Feature

LSTM [14]† 3.87 - -
Informer [55]† 3.42 - -
Vanilla MOMENT [12]† 3.28 X -

Vanilla PointNet? 3.96 - X
PointNet–PSI (ours) 2.71 X X

Table 1: Forecast accuracy on EGMS 2021 (lower is better). † = our implementation; ? =
PointNet without Moment.

Qualitative evaluation. Figure 4 illustrates six representative test-series generated by our
PointNet-PSI. Each panel shows the 120-step input context (solid navy), the 60-step ground-
truth continuation (dotted blue), and our forecast (dashed red). The examples were deliber-
ately chosen to span the spectrum of ground-motion behaviours found in the EGMS corpus.
In both monotonic subsidence and uplift the network extrapolates the long-term trend almost
perfectly, preserving both slope and absolute magnitude. For seasonally modulated subsi-
dence, PointNet-PSI reproduces the annual oscillation that is super-imposed on the down-
ward drift, showing that the temporal backbone retains high-frequency information even
after spatial conditioning. When the motion is seasonally modulated uplift the predicted dis-
placement closely matches the phase and amplitude of the observed cycle, confirming that
the model does not merely fit a linear trend. The final pair of examples contains pronounced
non-linear transients–abrupt rate changes and episodic accelerations that are notoriously dif-
ficult to forecast. Although small timing discrepancies remain, the predictions capture both
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Figure 4: Qualitative result of test data. Ground true 2021 displacements (blue dashed
line) and PointNet-PSI (red line).

the onset and the sign of these events, whereas per-point baselines typically revert to the
mean once the context ends.

Across all six panels, the red dashed forecasts remain spatially coherent with their sur-
roundings (not shown), validating the benefit of the PointNet-derived neighbourhood de-
scriptor. Taken together with the quantitative gains in Table 1, the visual evidence highlights
the ability of PointNet-PSI to model a wide variety of geophysical deformation regimes
without any hand-crafted priors.

5 Conclusion
Accurately forecasting ground deformation is pivotal for hazard mitigation, infrastructure
management, and urban planning. This paper has shown that PS–InSAR stacks can be treated
as 3-D point clouds in which each scatterer carries a rich displacement history. Leveraging
this view, we proposed PointNet–PSI, a hybrid architecture that augments the time-series
foundation model MOMENT with a lightweight, permutation-invariant PointNet encoder.
Experiments on the European Ground Motion Service Basic 2019-2023 data set demon-
strated that the spatially enriched backbone not only improves numerical accuracy but also
produces forecasts that remain consistent across space. This predictive method is likely to
advance downstream tasks such as anomaly detection.

Despite its benefits, PointNet-PSI incurs additional cost because each forward pass must
query a fixed-radius neighbourhood, an operation whose complexity grows with point den-
sity. Performance may therefore degrade in tiles where the scatterer spacing varies sharply
(for example, from rural to urban zones), and the current design has not been validated
on man-made structures such as dams or bridges, where deformation mechanisms differ
from those of natural terrain. Three avenues appear particularly promising. First, scal-
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able indexing: replacing on-the-fly radius searches with hierarchical spatial indices or pre-
computed k-NN graphs would dramatically reduce the cost of neighbourhood retrieval and
make continental-scale inference routine. Second, spatial-aware pooling: incorporating set-
abstraction layers in the spirit of PointNet should bolster robustness when the PS–InSAR
scattered points are highly non-uniform, as are common near coastlines or urban centres.
Third, task transfer: the large PS–InSAR dataset leveraged here effectively trains a foun-
dation model for ground motion; fine-tuning this model on sparse, high-rate monitoring
networks deployed around dams, bridges and tunnels could unlock reliable early-warning
capability for critical infrastructure.

By coupling spatial context with foundation-scale temporal modelling, PointNet-PSI
charts a practical path toward continent-wide, physically coherent now-casting and opens
the door to a new class of point-cloud-based deformation forecasting systems.
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