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Abstract

The Oil and Gas industry supplies most of the world’s energy, but also poses environ-
mental risks. Specifically, its entire value chain is associated with oil spills that harm
ecosystems and coastal livelihoods. This calls for prevention measures as offshore pro-
duction expands into challenging conditions. Visual surveillance, powered by deep learn-
ing models such as Convolutional Neural Networks, U-Net, You Only Look Once, and
Reinforcement Learning agents, is widely used to detect leaks and operational anoma-
lies. While these models achieve high accuracy, most studies overlook their energy use,
carbon emissions, and lifecycle impacts. This narrative review of research from 2020
to 2025 reveals a clear split between compute-intensive and lightweight designs. The
latter delivers nearly the same performance at far lower cost. This highlights the need for
lifecycle-aware evaluation, standard efficiency metrics, and design choices that balance
accuracy with environmental responsibility. To our knowledge, this is the first review
to frame oil spill prevention vision methods explicitly through Green and Sustainable
Artificial Intelligence principles.

1 Introduction
The Oil and Gas (O&G) industry still supplies most of global energy even as renewable
sources grow, but its operations carry significant environmental risks, such as greenhouse
gas (GHG) emissions, pollution, and oil spills [10]. Oil spills in particular damage ecosys-
tems and coastal livelihoods [2]. The urgency of this problem is underscored by recent high-
profile spills and the ongoing expansion of offshore operations into riskier environments
[15]. Preventing spills requires continuous monitoring of facilities, and visual surveillance
through satellite, drone, closed-circuit television (CCTV), and remotely operated vehicle
(ROV) acquired imagery, now underpins many systems. Deep learning models, such as
Convolutional Neural Networks (CNNs), U-Nets, the You Only Look Once (YOLO) model,
and Reinforcement Learning (RL) agents, are applied to detect leaks and anomalies with
reported accuracies often exceeding 90% [4, 13, 18, 20, 23, 24]. Despite this progress, most
papers focus on accuracy and ignore computational cost and carbon footprint. For example,
training large vision models can emit hundreds of tonnes of CO2 [8, 9, 12, 21]. Such costs
are invisible in the current oil spill prevention (OSP) literature: none of the reviewed studies
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reports energy use, FLOPs, or CO2 emissions. We highlight this gap based on the Green Ar-
tificial Intelligence (AI) and Sustainable AI frameworks, which call for reporting efficiency
alongside accuracy [19, 22]. Our goal is to map the energy profiles of OSP vision research
and propose guidelines for responsible design and reporting. The following section reviews
how different OSP studies approach data, architectures, training, and deployment, and how
these choices shape their energy profile.

2 Energy Profile of Vision-Based OSP

2.1 Data Practices and Their Energy Impact

We begin with data practices, as dataset design and augmentation strongly influence both
accuracy and energy cost. Some OSP studies expanded small datasets through heavy aug-
mentation or simulation, gaining accuracy at the expense of higher computation. Soares et
al. [20] utilised a U-Net for corrosion detection in a storage tank. With only 56 annotated
images, they applied extensive augmentations (e.g. blur, lighting, and reflections) to up to
672 images. This raised the segmentation intersection over union (IoU) to ≈0.945 but re-
quired 500-epoch GPU training (NVIDIA T4), a clearly energy-intensive process, though
energy use was not reported. Wang et al. [23] generated synthetic data via a digital-twin
ocean model simulating oil spill spread. Thousands of images were used to train a deep Q-
network with reinforcement learning to locate spill sources, achieving a simulated accuracy
of 98.97%. This involved days of RL rollouts, implying high hidden energy costs. Chagas et
al. [3] avoided deep learning, using classical vision (background subtraction, filtering, blob
detection) on ROV video to track bubbles and estimate leaks in a subsea oil pipeline. Their
C# implementation processed 87 frames per second (fps) on a CPU, far faster and more ef-
ficient than prior methods. In summary, heavy augmentation [20] and simulation [23] boost
accuracy but increase computational needs, while classical analytics [3] achieve real-time
results with minimal energy. Sustainable practice balances these extremes, using augmenta-
tion or simulation only when necessary and favouring pre-existing data or analytical methods
to avoid redundant training. These cases highlight the tension between accuracy gains and
computational overhead, a theme that recurs across model designs.

2.2 Model Architectures and Algorithmic Design

Model design is the most visible source of variation in energy demand, ranging from single
CNNs to multi-model ensembles and edge-ready networks. In the following sections, we
discuss the most commonly used architectures in terms of their viability to meet efficiency
demands.

2.2.1 Single-network CNNs

Ferreira et al. [18] utilised a multi-layer CNN to regress pipeline corrosion defect severity
(e.g., predicting remaining wall thickness or burst pressure). The CNN was trained and val-
idated on a combination of finite element method (FEM) simulation data and physical burst
test results. The model achieved high accuracy (the authors report an R2 ≈0.95 coefficient,
indicating close agreement between predictions and ground-truth). However, the architecture
was a fairly standard deep CNN, and the authors did not discuss any efficiency optimisations
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or measure inference speed. Notably, Ferreira et al. performed extensive validation. Using
100 Monte Carlo cross-validation runs, which, while good for statistical confidence, mul-
tiplies the training effort by 100×. This approach yielded a robust model but with a heavy
computational burden for training and testing.

Xu et al. [24] proposed a novel architecture called the Immune Depth Presentation CNN
(IDPCNN) for oil and gas pipeline fault diagnosis. The key innovation in their work was
the addition of specialised 1×1 convolutional layers inspired by biological immune systems
to capture inter-feature (channel-wise) correlations, which standard CNNs often overlook.
Enhancing CNN with these “immune” layers resulted in the IDPCNN, a five-stage CNN,
making it a deeper network with more parameters than baseline models. Upon testing on
infrared pipeline images with complex backgrounds, the IDPCNN outperformed classic ar-
chitectures, such as VGG16, VGG19, ResNet34, and ResNet50, achieving the highest aver-
age defect detection accuracy among them. The main trade-off in this work is complexity.
The authors note that the enriched network “exhibits a certain level of complexity”, which
increases computational load and training time. They argue that this is justified for critical
fault diagnosis, where accuracy and stability are more important than speed. Xu and Yu’s
model gains about 2–5% accuracy over simpler CNNs, but at the cost of a larger model
with more computation. From a sustainability perspective, it is a compute-intensive design,
chosen deliberately to maximise performance in a safety-critical setting.

2.2.2 Ensembles and multi-model pipelines

Dang et al. [4] developed an ensemble of nine deep learning classifiers for event (anomaly)
classification in subsea pipeline inspection videos. Their ensemble combined six CNN-
based models (VGG16, ResNet50, InceptionV3, InceptionResNetV2, DenseNet121, Xcep-
tion) and three Transformer-based vision models (ViT, MaxViT, Swin-Transformer). Each
model was first fine-tuned individually on the datasets, and then their outputs were fused by a
weighted voting scheme optimised on a validation set. The result was very high accuracy on
the tested datasets: the ensemble achieved around 78% accuracy on two challenging datasets
and over 99% on a third dataset with simpler conditions, outperforming any single model
in isolation. The accuracy gains, however, came at significant computational cost. Training
nine models (even with transfer learning) requires nine times the training computations (the
authors used ImageNet-pretrained weights for some models to mitigate this). More impor-
tantly, inference with the full ensemble means running all nine models for each new input,
which is extremely demanding. Even if each model runs in parallel, the ensemble’s inference
time is dominated by the slowest network and uses 9× memory. In deployment, such a sys-
tem would likely need a powerful Graphics Processing Unit (GPU) server to process ROV
video frames in real-time. This approach lies at the extreme end of model complexity in our
review. It favours high accuracy and robustness (by assembling diverse architectures) over
efficiency. This shows that, although ensembles often deliver the highest accuracy, they con-
sume considerable energy and resources, making them unsuitable for low-power or real-time
edge use.

Ghorbani et al. [6] implemented a multi-task deep learning pipeline to monitor offshore oil
pollution from aerial images. Instead of one unified model, they trained separate models for
different subtasks: (1) a VGG16 CNN (with transfer learning) for image-level classification
of “oil spill present” vs “no spill”, (2) two segmentation networks (Mask R-CNN and PSP-
Net) for pixel-wise segmentation of the spill area, and (3) a YOLOv3 detector for identifying
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whether vessels or rigs are in the vicinity of the spill. The rationale was to provide a com-
prehensive situational picture: detect if a spill is in the image, segment its extent, and detect
nearby infrastructure. Each component performed well individually. The VGG16 classifier
reached ∼92% accuracy, the segmentation models had a mean IoU of 49% (Mask R-CNN)
and 68% (PSPNet) on challenging multi-location data, and YOLOv3 achieved ∼71% mAP
in detecting rigs/vessels. However, training three different DL models (even on the same
dataset, called “Nafta” with 1292 images) multiplied the cost. Moreover, at inference time,
the system must run all three models to fully analyse an image. This is more efficient than
Dang et al.’s 9-model ensemble, as each model handles a separate task rather than redundant
ensembles on a single task. However, it still exemplifies a compute-heavy design. The au-
thors did not report runtime performance, but a cloud deployment would likely be needed
for near-real-time processing of incoming images. There was no mention of model com-
pression or consolidation. It is possible that the system could be implemented as a single
multi-head model handling classification, segmentation, and detection to avoid duplicate
backbones while training each task from scratch. In essence, the authors presented an am-
bitious, multifaceted system with strong accuracy, but at the cost of running several large
models independently, which leads to substantial training and inference overhead.

2.2.3 Edge-oriented or Lightweight designs

Magana-Mora et al. [13] focused on drilling safety and introduced the “Well Control Space
Out” system. It is an IoT and edge computing solution deploying DL models on a drilling rig
for real-time visual monitoring. The core task was object detection: spotting the thicker tool
joints on the drill pipe in live video, so crews can know exactly where to close the blowout
preventer (BOP) during an emergency. The researchers evaluated several modern detector
architectures and backbones. Notably, they found that a Faster R-CNN with a ResNet-101
backbone gave the highest precision/recall (best Average Precision, AP) in detecting the rel-
evant objects. However, for deployment, they selected a ResNet-50-based model as the final
solution. The ResNet-101 model was slightly more accurate but slower and more challeng-
ing to deploy on an edge device. The authors chose the lighter ResNet-50, sacrificing a small
amount of accuracy for much faster inference, which translates into a deliberate efficiency
trade-off. They also used heavy data augmentation in training and added a custom post-
processing step, which increased the detector’s AP by about 4.5%, narrowing the gap while
maintaining speed. The result was an edge-deployable system that runs in real time (process-
ing video feeds on-site) and improves drilling safety by eliminating human delays that affect
oil well control. This approach thus shows a balance of accuracy and efficiency: they started
with state-of-the-art models, but then optimised for the edge by selecting a smaller backbone
and refining the model to regain accuracy. This contrasts sharply with the approach of using
the largest model available. Here, the design was shaped by edge-computing limits, aiming
for an architecture that balanced efficiency with accuracy.

Paroha et al. [16] developed a real-time monitoring system for oilfield operations using a
shallow, custom deep neural network. The model was built to detect anomalies in multi-
variate sensor data as they occurred. Given the temporal nature of the data, the architecture
included a Long Short-Term Memory (LSTM) layer for time-series inputs, followed by feed-
forward layers for classification. It achieved 92.5% accuracy, a detection speed of 0.28 sec-
onds (∼ 4 detections per second), and a “reactivity” score of 96.7%. Training used a broad
dataset of sensor readings, operational events, and environmental parameters. The network
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was optimised for fast inference at the edge, avoiding the need for millions of parameters or
ensemble methods. Its rapid runtime suggests it can run on standard industry hardware or
edge devices. The design kept complexity just high enough to capture the relevant patterns,
delivering over 92% accuracy while minimising energy use. By focusing on only the neces-
sary features and a streamlined architecture, it outperformed traditional non-AI monitoring
methods in both speed and accuracy.

2.2.4 Classical computer vision

Chagas et al.[3] (already discussed under data practices in Section ??, but worth noting here
as well for the architecture used) did not use a CNN or any deep model at all, relying instead
on classical image processing, which indeed can be considered a fixed algorithmic architec-
ture. Authors reported ∼20–80+ fps throughput on CPU and essentially zero training cost.
It is an existence proof that for certain OSP tasks (especially geometric measurements, such
as bubble counting), classical methods can meet real-time requirements without the need for
heavy AI models. The obvious downside is that such methods may not generalise to complex
imagery or multiple conditions compared to a learnable model. But as a design point, it is
the most energy-efficient architecture possible: no learned parameters, just efficient code.

Summary: We see two broad categories: energy-intensive architectures – large CNN back-
bones (VGG, ResNet101), multi-model ensembles, novel complex networks (IDPCNN with
extra layers), RL agents requiring iterative simulation – versus energy-efficient architec-
tures – smaller CNNs (ResNet50, YOLO models), shallow bespoke DNNs, and classical CV
pipelines. The former often pushes accuracy a few percentage points higher or adds capa-
bilities, but demands much more compute. The latter achieves slightly lower but still high
accuracy with a fraction of the resources, and they are viable on edge devices. This contrast
highlights the key challenge in OSP vision: delivering the needed accuracy while staying
efficient enough to be sustainable and practical to deploy. As we discuss later, techniques
such as model compression, knowledge distillation, and multi-task learning can sometimes
offer the “best of both” – approaching the accuracy of heavy models with the efficiency of
light ones – but these were largely absent in the current literature. In short, accuracy often
rises with complexity, but the marginal gains must be weighed against substantial increases
in computation.

2.3 Training Strategies and Energy Implications
How a model is trained — including setup, techniques, and iteration loops — can impact the
energy required to reach a given accuracy. Our review identified some patterns.

• Augmentation-heavy, long training: Soares et al. [20] trained for 500 epochs on heav-
ily augmented data, a brute-force route to higher IoU. Xu& Yu [24] used a complex
staged IDPCNN, likely requiring extensive tuning. Such long schedules can use five
times the energy of a 100-epoch run, often for marginal accuracy gains.

• Multi-model ensembles and cross-validation: Dang et al.’s nine-model ensemble [4],
Ghorbani & Behzadan’s four-model system [6], and Ferreira et al.’s 100-fold CNN
training [18] multiplied compute far beyond a single-model baseline. Parallel hard-
ware may hide wall-clock time, but total energy use still scales.
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• Simulation-driven reinforcement learning: Wang et al. [23] generated training data on
the fly via a high-fidelity ocean simulator, running tens of thousands of RL episodes.
Even with transfer learning, the combined simulation and network updates carry a
large hidden energy cost. Efficient RL, model simplification, and fewer simulation
runs could reduce this burden.

• Repeated validation and hyperparameter search: Extensive testing, as in Wang et al.
Monte Carlo [23] or Magana-Mora et al. variant sweeps [13] can dominate total com-
pute. In other AI fields, hundreds of trials are often required for a single result, as is
common [19]; OSP risks similar escalation as methods grow more complex.

• Lightweight or no-training approaches: Paroha et al. small DNN [16] trained quickly
on modest data; Chagas et al. [3] avoided training entirely, using classical CV on
CPUs for real-time results. Such methods cut energy use considerably.

Summary: None of the reviewed studies reported using early stopping, mixed-precision
training, batch-size tuning, knowledge distillation, pruning, or quantisation — all common
“Green AI” practices [5, 17, 19]. Layer freezing appeared only in Ghorbani et al. classifier
[6]. Current OSP training often favours thoroughness over efficiency, with long runs, mul-
tiple models, and extra data. Sustainable practice involves reusing pretrained models, stop-
ping when gains plateau, sharing representations, narrowing hyperparameter ranges through
small-scale tests, and reporting these details to avoid redundant high-cost experiments. With-
out such measures, the carbon footprint of “state-of-the-art” remains both large and opaque.

2.4 Deployment Considerations
Deployment context (cloud vs. edge) greatly influences a model’s real-world energy use:

2.4.1 Cloud deployments.

Some methods implicitly assume the use of powerful data centres. Dang et al. 9-model
ensemble [4] would likely run on a cloud GPU server for offline ROV analysis. Ghorbani et
al. pipeline [6] also suggests central processing of images (e.g., onshore servers). Soares’s
U-Net training implies offline GPU use. Cloud deployment concentrates energy in data
centres (which may or may not use renewable power) and adds network transmission costs
for raw data. The advantage is the ability to run large models and ensembles; the downsides
include latency for real-time use and less control over energy sources.

2.4.2 Edge or On-Site Deployments

Several works were designed for resource-limited settings. For example, Magana-Mora et
al. [13] deployed their model on a local server at a drilling site, selecting a smaller model for
real-time performance on limited hardware. Paroha et al. DNN [16] was intended to run on
an industrial PC or microcontroller at the sensor source, enabling a 0.28s response without
relying on connectivity. Chagas et al. algorithm [3] was meant for an ROV’s onboard com-
puter, achieving high FPS using only CPUs. Edge deployment inherently enforces efficiency:
models must fit memory and power constraints, and raw video can be processed locally to
save bandwidth. However, edge hardware is often less energy-efficient per compute unit (no
advanced cooling or accelerators), so the models must still be lean.
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2.4.3 Hybrid Strategies

A hybrid approach may split training and inference. For example, Wang’s RL model [23]
can be trained in the cloud (with a high simulation cost) and then deployed on satellite
or ground stations for lightweight inference on live images. The training data generation
is expensive, but applying the trained model at scale is relatively cheap. Sustainable AI
encourages considering this lifecycle: amortise a heavy training cost over many inference
uses, and retrain only when necessary. Table 1 summarises edge-targeted studies (Chagas et
al. [3], Magana-Mora et al. [13] and Paroha et al. [16]) all using simpler, faster models, and
heavier/ensemble networks, mostly cloud-based (Soares et al. [20], Ferreira et al. [18], Xu
et al. [24], Dang et al. [4], Ghorbani et al. [6] and Wang et al. [23]). The simpler, faster,
edge-targeted studies suggests that “designing with deployment in mind” can lead to more
efficient solutions; for example, Dang et al. [4] could have used a single model with multiple
outputs instead of an ensemble to save costs.

Table 1: Summary of nine vision-based OSP studies (2020–2025). Efficiency profiles are
inferred from model design choices rather than direct energy measurements.

Study(Year) Approach / Model Reported Outcome Profile
Soares et al.
(2021)[20]

U-Net CNN with
heavy augmentation

IoU ≈0.94 (peak);
avg ∼87%

GPU intensive (672 im-
ages; 500 epochs; T4
GPU)

Ferreira
et al.
(2021)[18]

Multi-layer CNN re-
gression on FEM +
burst tests

R2 ≈ 0.95 for defect
severity

High compute demand
(100 Monte Carlo CV
runs)

Xu et al.
(2024)[24]

IDPCNN (immune
CNN with 5 stages)

>99% accuracy; bet-
ter than VGG/ResNet
baselines

High complexity; more
parameters; long train-
ing; not edge-suitable

Dang et al.
(2025)[4]

Ensemble of 6 CNNs
+ 3 Transformers

Accuracy 78–99%
across datasets

Very intensive (nine
models per input; high
inference cost)

Ghorbani et
al. (2021)[6]

Multi-task CNNs
(VGG16, Mask
R-CNN, PSPNet,
YOLOv3)

92% classification;
IoU 49–68%; mAP
∼71%

High overhead (3 sep-
arate networks; cloud-
only)

Wang et al.
(2022) [23]

Deep Q-Network with
transfer learning

98.97% accuracy
(Bohai simulations)

Very intensive (days of
RL simulation rollouts)

Chagas et al.
(2020)[3]

Classical CV pipeline
(blob detection)

20–87 FPS on CPU;
accurate bubble leak
flow estimates

Efficient (no training;
real-time CPU execu-
tion)

Magana-
Mora et al.
(2021)[13]

ResNet-50 backbone
for drilling safety

∼94–96% detection;
+4.5% AP with aug.

Efficient (edge-ready;
smaller backbone cho-
sen for latency)

Paroha et al.
(2024)[16]

Shallow DNN with
LSTM for sensor data

92.5% accuracy;
0.28s detection la-
tency

Moderate (lightweight;
realtime on industrial
PC)
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While Section 2.1 explains how data augmentation and simulation practices affect energy
use, Table 2 summarises the dataset characteristics and their implications for the reported
outcomes (in Table 1). Most studies rely on small real-world samples (e.g., Soares ∼200
images with only 56 annotated [20]; Xu & Yu 500 IR frames [24]). Others depend on syn-
thetic or simulated data ( e.g, Ferreira et al’s FEM-based cases [18] and Wang’s Bohai oil
spill scenario [23]), which may not generalise. Heavy augmentation or simulation is used
to compensate for inadequate datasets, inflating accuracy without addressing the underlying
scarcity. Even large datasets exhibit imbalance. Dang’s ROV Dataset "C" contained only 15
images of concrete damage and 23 of debris, compared with more than 900 exposure and
normal images [4]. In all, only Ghorbani & Behzadan [6] provide a moderately sized dataset,
while Paroha [16] used proprietary logs, but neither is publicly available. These limitations
show that reported accuracies often depend on limited or inaccessible data foundations, em-
phasising the need to consider dataset quality as part of sustainability-aware evaluation.

Table 2: Dataset characteristics of nine vision-based OSP studies (2020–2025). Most
datasets are small, synthetic, or imbalanced, limiting generalisability. Interpreting results
requires attention to both dataset quality and unreported energy and carbon costs.

Study (Year) Dataset Characteristics
Soares et al.
(2023) [20]

∼200 grayscale
lab images (only
56 annotated)

U-Net segmentation; binary masks; heavy
augmentation (lighting, blur, dust); small, ho-
mogeneous; risk of overfitting.

Ferreira et al.
(2021)[18]

100 FEM-
simulated cases

Synthetic corrosion defects; no augmentation;
very small; validated with Monte Carlo CV
only.

Xu & Yu (2024) 500 IR pipeline
images

Thermal FLIR frames; binary expert labels;
augmentation (flips, crops, rotations); bal-
anced but limited scale.

Dang et al.
(2024)[4]

ROV frames (A:
819, B: 5212, C:
1891)

Multi-class annotations; extensive augmenta-
tion; severe imbalance (e.g., 15 samples for
concrete damage).

Ghorbani & Be-
hzadan (2021)[6]

1292 aerial/ocean
images

Mixed drone/satellite/ground sources; pixel
masks (oil, vessel, rig); balanced spill labels;
moderate size.

Wang et al.
(2022)[23]

Bohai SAR +
simulation

Fully synthetic (Envisat + ECOM model);
single-event, scenario-specific.

Chagas et al.
(2023)[3]

6 ROV videos
(∼14k frames)

Bubble leaks; manual calibration; assumes no
overlap; no augmentation; limited coverage.

Magana-Mora et
al. (2021)[13]

1100 rig CCTV
images

Drillstring tool joints; annotated; heavy aug-
mentation (lighting, color shifts); domain-
specific.

Paroha
(2024)[16]

Proprietary sen-
sor logs

Pressure, temperature, flow states; extensive
preprocessing; no augmentation.

Without sufficiently large, balanced, and representative datasets, training can incur substan-
tial energy and carbon costs without producing deployable solutions. Sustainability-aware
evaluation must therefore consider both dataset integrity and transparent reporting of energy
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and carbon emissions.

3 Sustainability Implications
Across the reviewed studies, accuracy is consistently high (often above 90%), confirming
the potential of vision AI in preventing oil spills. Yet sustainability metrics are absent. None
reports energy use, carbon emissions, FLOPs, or inference latency (except Paroha, who gives
latency indirectly). We contrast “energy-intensive” vs. “energy-efficient” practices below.

3.1 Energy-Intensive Approaches
These maximise performance but at high computational cost:

• Extensive, uncompressed backbones: e.g., Ghorbani et al. [6] VGG16 with ∼16M pa-
rameters, fine-tuned almost entirely, increasing compute compared to partial freezing.

• Multi-model ensembles: Dang et al. [4] nine-model setup increases the training and
inference costs, as well as storage needs.

• Heavy augmentation and long training: Soares et al. [20] 12× augmentation and 500-
epoch schedule improved IoU but likely yielded diminishing returns without early
stopping.

• Simulation-driven RL: Wang et al. [23] high-accuracy results were achieved through
thousands of simulated episodes, each of which was computationally expensive.

• Excessive validation: Repeated training cycles, as in Rezende et al. [18] 100-fold
cross-validation, inflate GPU hours. Such practices, while boosting accuracy, risk
escalating the field’s carbon footprint as data and model sizes grow.

3.2 Energy-Efficient Approaches
These prioritise practicality and lower compute:

• Shallow or compact models: Paroha et al. [16] DNN and Magana-Mora’s ResNet-50
detector met accuracy targets (90–96%) and ran on edge devices without GPUs.

• Backbone sharing/multi-task learning [7]: Not used in the reviewed works, but com-
bining tasks in a single network could reduce parameters and computation.

• Classical CV: Chagas et al. [3] blob detection achieved real-time leak tracking on
CPUs with negligible energy use.

• Edge-first design: Starting with deployment constraints led to efficient and accurate
systems in Paroha et al. [16] and Magana-Mora et al. [13] works.

OSP visual surveillance spans “Red AI” practices that maximise accuracy at high cost and
“Green AI” approaches that balance performance with efficiency [19]. The field is still
in an early stage, with little attention paid to the cost of achieving high performance. In
mainstream AI, this gap is narrowing as tools such as CodeCarbon, CarbonTracker, and
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Experiment-Impact-Tracker log energy use and emissions [11]. Publication outlets are also
beginning to require efficiency reporting [9]. Despite its environmental focus, the OSP do-
main has yet to adopt these practices. In some cases, the computation used to prevent spills
could itself contribute to emissions, making it essential to design methods that maintain high
accuracy while reducing energy demand [14]. Several studies show this is possible: Chagas
et al. [3] classical method achieved its goal with negligible carbon cost; Magana-Mora et al.
[13] edge-optimised model likely matched heavier systems; Paroha et al. [16] simple DNN
outperformed non-AI baselines. These examples suggest many OSP tasks can be efficient
by design without losing effectiveness. As Schwartz et al. [19] emphasise, computational
efficiency should stand alongside accuracy as a core metric.

4 Recommendations
To align OSP vision research with environmental goals, we recommend:

• Dual performance reporting: Report accuracy alongside efficiency metrics such as
FLOPs per inference, compute hours, and estimated energy or CO2. Simple logging
tools can track usage, enabling fair comparisons, and publishers could require this or
set carbon limits (e.g., 50 kg CO2 for train + deploy).

• Efficiency methods: Integrate compression and optimisation during development [17].
Pruning can remove ∼50% of CNN weights with minimal accuracy loss; quantisation
(FP16/INT8) speeds inference and cuts energy use; knowledge distillation can replace
large ensembles with a single compact model (e.g., distilling Dang et al.’s nine-model
ensemble to one CNN retaining ∼95% accuracy). Other options include efficient NAS
[5], multi-task learning [7], or even classical ML for small datasets. The bottom line
is to treat efficiency as a core design goal.

• Edge-first and TinyML deployment: Many OSP tasks occur in remote, resource-
limited settings, so designing for the edge avoids over-engineering and supports solar
or battery power. TinyML [1] enables sub-1 MB models on low-power chips, e.g.,
detecting spills on-device before sending images to save bandwidth. Compact CNNs,
such as MobileNets [4] already meet these limits, and an “OSP on the Edge” challenge
could spur innovation under strict memory and compute budgets.

5 Conclusion
Visual AI for oil spill prevention achieves high-accuracy detection but often overlooks its
environmental cost. Our review of nine studies (2020–2025) found no reporting of energy
use or carbon emissions, and a frequent reliance on large models, ensembles, and long train-
ing cycles. Yet lighter approaches, including shallow DNNs, edge-optimised networks, and
classical CV, delivered similar results with far less computation, showing that accuracy and
sustainability can coexist. We recommend lifecycle-aware evaluation, measuring both accu-
racy and environmental footprint and utilising efficiency-focused methods such as pruning,
distillation, and optimised search. Benchmarks should reward models that achieve more with
fewer resources. Embedding sustainability into design and evaluation would position OSP
research as a model for responsible AI in other climate-sensitive domains.
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