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Abstract

Air pollution is a major environmental and health challenge, with fine particulate
matter (PM2.5) responsible for millions of premature deaths each year. Ground-based
sensors provide reliable air quality measurements but are costly and sparsely distributed,
limiting large-scale coverage. As a complementary approach, image-based methods us-
ing street-level photographs have emerged, though most rely on large, computationally
heavy networks that neglect physical principles of haze formation and often produce
poorly calibrated outputs. This paper introduces a lightweight, physics-informed, and
calibrated framework for smog-level classification from street-level imagery. The back-
bone model is MobileNetV3-Small, designed for efficient CPU inference. To better rec-
ognize minority pollution categories, physics-informed regularization is applied by em-
bedding atmospheric scattering cues—contrast, sharpness, and dark channel prior—into
the loss function. Reliability is enhanced through test-time augmentation and temper-
ature scaling, while interpretability is addressed using Grad-CAM visualizations and
monotonic physics-feature trends. Experiments on the Smartphone-Based Air Pollution
Image Dataset (SAPID) show that the proposed Physics v2 model achieves 86.5% test
accuracy and a macro-F1 score of 0.835, surpassing the baseline MobileNetV3-Small
(81.1%, 0.756 macro-F1). The framework also operates in real time on CPU hardware at
over 100 FPS, with an Expected Calibration Error (ECE) of 0.071. These results demon-
strate the potential of combining lightweight architectures, physics priors, and calibration
techniques to deliver accurate, interpretable, and deployable vision systems for low-cost
urban air quality monitoring.

1 Introduction
Air pollution is among the most significant global health risks, with approximately seven
million premature deaths annually linked to fine particulate matter and other pollutants [14].
Chronic exposure to PM2.5 and PM10 is associated with cardiovascular and respiratory dis-
eases, as well as impaired child lung development [2]. Rapid urbanization and industrial-
ization, especially in low- and middle-income countries, exacerbate air quality challenges
where dense monitoring infrastructure is lacking.
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Ground-based stations provide precise pollutant measurements but remain expensive to
install and maintain, leading to sparse coverage and limiting fine-grained assessments [8].
To overcome this, recent research has explored low-cost alternatives leveraging ubiquitous
sensing modalities such as smartphones and public cameras. Street-level imagery captures
visual indicators of pollution, including haze and reduced visibility, making it a promising
complementary data source.

Early computer vision methods employed handcrafted features such as edge sharpness
and color attenuation. More recent approaches apply deep learning, directly regressing par-
ticulate levels from images [8, 11]. Despite promising results, three key limitations remain:
(i) reliance on large models like ResNet and VGG that require GPUs, hindering deployment
in resource-constrained settings; (ii) neglect of atmospheric scattering principles underly-
ing haze formation; (iii) class imbalance in critical but underrepresented categories such as
“Unhealthy for Sensitive Groups” and “Very Unhealthy”; and (iv) overconfident predictions,
underscoring the need for calibration [4].

Lightweight networks such as MobileNetV3 [6] offer efficiency for edge devices, while
physics-informed learning introduces domain priors into training. Atmospheric cues like
contrast, sharpness, and dark channel priors are particularly relevant to haze modeling [5,
13]. Calibration methods (e.g., temperature scaling) enhance reliability [4], and interpretabil-
ity techniques like Grad-CAM [18] provide transparency.

This study proposes a lightweight, physics-informed, and calibrated framework for smog-
level classification using MobileNetV3-Small. Evaluated on the Smartphone-based Air Pol-
lution Image Dataset (SAPID), the approach integrates physics priors and calibration to im-
prove recognition of minority classes, ensure reliable predictions, and enable efficient CPU-
only deployment.

2 Related Work
Compact CNNs have enabled efficient on-device perception. MobileNetV2 introduced in-
verted residuals with linear bottlenecks and depthwise separable convolutions [17], while
MobileNetV3 added h-swish activation, squeeze-and-excitation, and hardware-aware NAS
for state-of-the-art accuracy under latency constraints [6]. These remain strong baselines for
CPU-only deployment. Adverse-weather vision builds on the atmospheric scattering model,
where observed radiance combines attenuated scene radiance and airlight [13]. The dark
channel prior (DCP) became a seminal dehazing heuristic [5], and benchmarks such as RE-
SIDE [10] established standardized evaluation. Air-quality estimation evolved from hand-
crafted cues to CNN-based regression/classification of PM2.5/AQI from street or surveillance
imagery, sometimes extended with temporal modeling (CNN–LSTM) [22]. Practical de-
ployments for real-time regression [9] and hybrid pipelines with satellites further highlight
its applicability.

PINNs embed governing equations as constraints to improve physical fidelity [16]. For
haze/smog vision, cues such as contrast, Laplacian sharpness, and DCP align with scattering
physics and are increasingly used as priors or regularizers [7]. Deep models are often mis-
calibrated. Guo et al. [4] showed that temperature scaling significantly improves reliability
without reducing accuracy. In environmental monitoring, calibrated confidence estimates are
critical for thresholding and decision support. RESIDE [10] supports dehazing evaluation,
while HVAQ links images with pollutant and meteorological data across cities [1]. SAPID
[24] provides smartphone photos grouped into five EPA AQI categories, enabling lightweight
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classification studies. Deployment faces dataset shift across cameras, cities, seasons, and co-
occurring weather [15]. Classical domain adaptation aligns source and target via CORAL
[19] or adversarial learning [3]. Surveys [21, 23] document strong gains, while recent test-
time adaptation dispenses with source data and adapts using entropy minimization (TENT)
[20] or source-free SHOT [12]. Such lightweight adaptation is promising for environmental
vision where labels are scarce.

Across lightweight CNNs, image-based haze/AQ estimation, physics-informed learning,
calibration, and domain adaptation, several gaps remain salient for deployment in resource-
constrained urban monitoring since many models assume GPU availability and large back-
bones; fewer studies report accuracy–latency trade-offs for CPU-only inference suitable for
smart phones or embedded devices [6]. Learning pipelines often remain purely data-driven;
the literature shows fewer examples where atmospheric scattering cues (contrast, sharp-
ness, dark-channel statistics) are explicitly enforced during training in a way that improves
minority-class recognition. Image-based AQ estimation systems rarely report calibration
metrics; yet calibrated confidence is critical for thresholding and alerting in environmen-
tal applications [4]. Datasets such as SAPID exhibit severe class imbalance, with under-
represented high-severity categories. Robust learning under such imbalance, coupled with
interpretability, remains under-explored at the edge. Cross-region generalization and test-
time adaptation are underutilized in AQ-from-images, despite clear distribution shifts across
cameras, cities, and seasons [12, 20, 23].

These observations indicate a research gap for a lightweight, physics-informed, and cal-
ibrated air-quality classifier that performs on CPU-class hardware, improves minority-class
recognition, and remains robust under realistic distribution shifts via simple test-time proce-
dures. Such a design directly addresses operational constraints in low-cost, scalable urban
monitoring.

3 Research Methods
The Smartphone-Based Air Pollution Image Dataset (SAPID) [24] is used as the primary
benchmark. It consists of 492 street-level images annotated with five air quality categories
following the US Environmental Protection Agency (EPA) Air Quality Index (AQI): Good,
Moderate, Unhealthy for Sensitive Groups (USG), Unhealthy, and Very Unhealthy. As
shown earlier (Table ??), the dataset is highly imbalanced, with only 32 samples in the USG
class and 40 in Very Unhealthy, in contrast to 188 in the Moderate class. Images are resized
to 224× 224 and normalized using ImageNet mean and standard deviation. Data augmen-
tation includes random flips, rotations, and color jittering to improve generalization [24].
The baseline classifier is based on MobileNetV3-Small [6], which uses depthwise separable
convolutions, inverted residuals, and squeeze-and-excitation blocks with h-swish activations.
For an input image x ∈ R3×H×W , the network extracts features f (x) ∈ Rd , which are passed
to a fully connected classifier:

z =W f (x)+b, ŷ = softmax(z),

where z ∈ RC are the logits, C = 5 is the number of AQI classes, and ŷ is the predicted
probability distribution. The baseline is trained using class-weighted cross-entropy loss:

LCE =−
C

∑
i=1

wi yi log ŷi,
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where y is the one-hot ground truth vector and wi are class weights to address dataset imbal-
ance.

3.1 Physics-Informed Model
To integrate atmospheric scattering priors [5, 13], three physics-inspired features are ex-
tracted from each input image:

1. Contrast (C(x)): Standard deviation of pixel intensities or global contrast tensor, ex-
pected to decrease with pollution severity.

2. Sharpness (S(x)): Laplacian variance measuring edge clarity, also decreasing under
haze.

3. Dark Channel Prior (D(x)): Defined as

D(x) = min
c∈{R,G,B}

(
min

u∈Ω(x)
Ic(u)

)
,

where Ω(x) is a local patch around pixel x, and Ic(u) is the intensity in color channel
c. The DCP increases under heavier smog.

Let φ(x) = [C(x),S(x),D(x)] be the physics feature vector. The model enforces mono-
tonic consistency by penalizing violations of the expected order across pollution categories.
For two samples (xi,yi) and (x j,y j) with yi < y j (less polluted vs. more polluted), the
physics-informed ranking loss is defined as:

Lphysics =∑
i, j

(
max

(
0, (C(x j)−C(xi))

)
+max

(
0, (S(x j)−S(xi))

)
+max

(
0, (D(xi)−D(x j))

))
.

This enforces decreasing contrast and sharpness, and increasing dark channel prior, with
rising pollution severity.

The total objective is:
Ltotal = LCE +λphysLphysics,

where λphys = 0.2 balances classification and physics constraints.
Neural networks are often miscalibrated, producing overconfident predictions [4]. Logits

z are calibrated using temperature scaling:

ŷcal
i =

exp(zi/T )

∑
C
j=1 exp(z j/T )

,

where T > 0 is a learned temperature parameter optimized on the validation set. A perfectly
calibrated model satisfies

P(Y = y | p̂) = p̂, ∀ p̂ ∈ [0,1].

To improve robustness, test-time augmentation (TTA) generates K transformations {tk(x)}K
k=1

for each input, and predictions are averaged:

ŷT TA =
1
K

K

∑
k=1

ŷ(tk(x)).
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Input x MobileNetV3 Logits z Softmax ŷ Temp. Scaling ŷcal AQI class

Physics cues
C(x),S(x),D(x)

TTA (augment & average)

Figure 1: Architecture overview

Input x MobileNetV3-Small Features f (x) Logits z Softmax ŷ Temp. Scaling ŷcal Prediction

LCE

Physics feats
C(x),S(x),D(x)

Lphysics Ltotal
TTA transforms tk(x) Σ Average

Training (classification)

Training (physics regularization)

Inference (TTA + calibration)

Figure 2: End-to-end pipeline

Physics loss mechanics for pairwise ranking is depicted in Figure 3. For two samples
with severities si < s j, contrast C and sharpness S are expected to decrease, while dark chan-
nel D is expected to increase with severity. A hinge margin δ penalizes violations, forming
the physics-informed component of the total objective.

The models are trained in PyTorch using the AdamW optimizer with weight decay 10−4

and an initial learning rate of 3× 10−4, following a cosine decay schedule. A batch size
of 32 is used. Early stopping is triggered if validation macro-F1 does not improve for six
consecutive epochs. To address dataset imbalance, class-weighted cross-entropy with label
smoothing (ε = 0.05) is employed. Gradient clipping (ℓ2 norm capped at 1.0) prevents insta-
bility. Performance is evaluated using accuracy and macro-F1, the latter being particularly
important under imbalanced data distributions. In addition, per-class precision, recall, and
average precision (AP) are reported. Reliability of predicted probabilities is measured using
Expected Calibration Error (ECE) [4]. Model efficiency is evaluated in terms of parameter
count, file size, CPU latency (milliseconds per image), and frames per second (FPS). Inter-
pretability is assessed qualitatively with Grad-CAM [18] and quantitatively with physics-
feature alignment trends.

4 Experimental Setup

All experiments were conducted in Google Colab with access to an NVIDIA Tesla T4
GPU (16 GB) when available and CPU-only mode otherwise. The model architecture and
training routines were implemented in PyTorch 2.1, using the Torchvision model zoo for
MobileNetV3-Small initialization [6]. Training and evaluation pipelines were executed un-
der Python 3.12, with supporting libraries including NumPy, Pandas, and scikit-learn. Grad-
CAM visualizations were generated using the TorchCAM library. The SAPID dataset [24]
was split into training (70%), validation (15%), and test (15%) sets, ensuring class-stratified
sampling to preserve distribution across splits. The validation set was used for hyperpa-
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Severity s

C(x)

i

j

si s j

Contrast (expect C ↓ as s ↑)

Severity s

S(x)

i j

si s j

push ↓

Sharpness (expect S ↓ as s ↑)

Severity s

D(x)

i

j

si s j

Dark Channel (expect D ↑ as s ↑)

Pairwise ranking loss for si < s j :
Lphys = max

(
0,C(x j)−C(xi)+δ

)
+max

(
0, S(x j)−S(xi)+δ

)
+max

(
0, D(xi)−D(x j)+δ

)
.

Margin δ > 0 enforces monotonic ordering; total objective Ltotal = LCE +λphysLphys.

Figure 3: Physics-informed pairwise ranking

rameter tuning, early stopping, and calibration (temperature scaling). The final test set was
reserved strictly for performance reporting. All images were resized to 224× 224 pixels
and normalized with ImageNet mean and standard deviation values. To increase robust-
ness and mitigate overfitting, training augmentations included random horizontal flips and
random rotations (±15◦), random brightness, contrast, and saturation jitter, random crop-
ping and scaling. For inference, standard resizing was applied, and test-time augmentation
(TTA) was used to generate multiple crops and scales per image, with averaged predictions.
Models were trained using the AdamW optimizer with an initial learning rate of 3× 10−4

and cosine decay scheduling. A batch size of 32 and early stopping with patience of six
epochs were employed. Gradient clipping with a maximum ℓ2 norm of 1.0 stabilized op-
timization. To address dataset imbalance, class-weighted cross-entropy loss was combined
with label smoothing (ε = 0.05). For the physics-informed variant, a regularization weight of
λphys = 0.2 was used for the physics-based loss component. Performance was assessed using
overall accuracy and macro-F1 score, the latter being critical for imbalanced datasets. Class-
wise precision, recall, and average precision (AP) were also reported. Calibration quality
was evaluated via Expected Calibration Error (ECE) following [4]. Model interpretability
was analyzed through Grad-CAM heatmaps [18] and physics-feature trend plots (contrast,
sharpness, dark channel prior). Efficiency metrics included parameter count, model file size,
CPU latency, and frames per second (FPS). The following configurations were compared: 1)
MobileNetV3-Small with standard cross-entropy training. 2) Initial physics-informed model
with basic regularization. 3) Improved physics-informed model with tuned λphys and rank-
ing constraints. 3) Incorporating TTA and temperature scaling for reliability. 4) Weighted
averaging of baseline and physics-informed predictions. This setup ensures a fair ablation
study and highlights the contributions of physics-informed regularization and calibration.

5 Results and Discussion

Figure 4 shows the SAPID dataset distribution, highlighting significant class imbalance. Mi-
nority categories (USG and Very Unhealthy) contain fewer than 50 samples each, motivating
the use of class weighting and physics-informed regularization.

The baseline MobileNetV3-Small achieved 81.1% test accuracy and 0.756 macro-F1
with TTA. Figure 5 presents the confusion matrix and one-vs-rest precision-recall (PR)
curves. While performance was strong for “Good” and “Moderate”, the model misclassi-
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Figure 4: Class distribution of SAPID dataset across five AQI categories.

(a) Confusion Matrix (Baseline) (b) PR Curves (Baseline)
Figure 5: Baseline results: (a) Confusion Matrix; (b) PR curves

fied minority categories (USG and Very Unhealthy).
The Physics v2 model improved recognition of minority categories by enforcing mono-

tonic trends in haze-sensitive features. It achieved 85.1% accuracy and 0.804 macro-F1 with
TTA. With calibration, performance further improved to 86.5% accuracy and 0.835 macro-
F1. Figure 6 compares confusion matrices of baseline, physics-informed, and ensemble
models.

To validate interpretability, physics features (contrast, sharpness, dark channel prior)
were analyzed against predicted classes. As shown in Figure 7, contrast and sharpness
decrease with increasing pollution severity, while the dark channel prior increases. These
trends are consistent with atmospheric scattering theory.

Figure 8 presents Grad-CAM visualizations for sample test images. The model con-
sistently attends to haze-heavy regions of the sky and building outlines, confirming that
decisions align with haze-relevant image regions rather than spurious background features.

Temperature scaling improved probability calibration. Figure 9 shows the reliability
diagram of Physics v2 after calibration, with an Expected Calibration Error (ECE) of 0.071.
This demonstrates alignment between predicted confidence and observed accuracy.

Table 1 compares efficiency metrics. Both baseline and physics-informed models remain
lightweight, with ∼1.5M parameters, ∼6 MB file size, and CPU inference speeds exceeding
100 FPS. Physics-informed modifications incur negligible additional cost.
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(a) Baseline (b) Physics v2 (c) Ensemble
Figure 6: Confusion matrices comparing Baseline, Physics v2, and Ensemble models.

Figure 7: Boxplots of physics features across predicted classes.

(a) Input Image (b) Grad-CAM Heatmap (c) Overlay
Figure 8: Grad-CAM visualizations.

Model Params (M) File Size (MB) CPU Latency (ms) FPS
Baseline (v3-small) 1.52 6.23 9.16 109.2
Physics v2 (v3-small) 1.52 6.23 8.99 111.2

Table 1: Efficiency comparison between baseline and Physics v2 models.
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Figure 9: Reliability diagram for Physics v2 + temperature scaling.

Model Test Accuracy Macro-F1
Baseline (TTA) 0.811 0.756
Physics v2 (TTA) 0.851 0.804
Physics v2 + TTA + Temp Scaling 0.865 0.835
Ensemble (equal weights, TTA) 0.824 0.788

Table 2: Final results summary on SAPID test set

Table 2 reports the final comparison of baseline, physics-informed, and calibrated mod-
els. The Physics v2 model with TTA and temperature scaling achieved the best performance
with 86.5% accuracy and 0.835 macro-F1.

6 Conclusion and Future Work
This study introduced a lightweight, physics-informed, and calibrated framework for smog-
level classification from street-level imagery. Built on MobileNetV3-Small, the model inte-
grates atmospheric scattering priors—contrast, sharpness, and dark channel statistics—into
the loss function to improve recognition of minority classes in the imbalanced SAPID dataset.
With test-time augmentation and temperature scaling, the Physics v2 model achieved 86.5%
accuracy and a macro-F1 of 0.835, surpassing the baseline while maintaining real-time CPU
performance at over 100 FPS. Grad-CAM analyses and monotonic physics-feature trends
enhanced interpretability, and calibration reduced Expected Calibration Error to 0.071, en-
suring reliable confidence estimates.

The results highlight three contributions: (1) CPU-ready lightweight models for urban
air quality monitoring, (2) physics-informed constraints that improve robustness under class
imbalance, and (3) calibration as a requirement for trustworthy deployment.

Future Research Directions: While promising, several extensions remain like address-
ing dataset shifts across regions, seasons, and devices via source-free or test-time meth-
ods [12, 20]. Combining street-level imagery with meteorological or satellite data to im-
prove robustness. Applying semi- or weakly-supervised learning to mitigate scarcity in
high-pollution categories. Benchmarking on smartphones, Raspberry Pi, and Jetson Nano
for practical scalability.Exploring attribution methods and physics-driven interpretability be-
yond Grad-CAM. By uniting efficiency, interpretability, and calibration, this framework ad-
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vances vision-based environmental intelligence and lays groundwork for scalable, low-cost
air quality monitoring. Further, while evaluated on SAPID, future work will address cross-
city and seasonal generalization, and integration with real-world monitoring networks.
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