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Abstract

The rapid development of modern neural networks has led to highly over-parameterized
models, resulting in excessive memory usage, computation, and energy consumption at
inference time. In this paper, we propose a structured pruning method inspired by the
Lottery Ticket Hypothesis, aiming to reduce the network size while preserving accuracy.
Our method removes entire neurons based on a magnitude-based selection criterion – un-
like the conventional unstructured approach of setting weights to zero via the utilization
of binary masks. Hereby, we demonstrate the efficacy of magnitude-based layer and
neuron selection techniques that guide our structured pruning algorithm without the ne-
cessity of complex search patterns. We validate our method on two distinct scenarios:
the well known CIFAR-100 dataset, and a document image analysis task. We evalu-
ate the benefits of our methodology using GPU-based energy measurements and show
that our pruned networks can reduce the energy consumption per sample by more than
40 % [Wh/sample], with comparable or slightly superior test accuracies. These findings
highlight the potential of structured pruning to create energy-efficient neural networks
suitable for deployment in resource-constrained environments.

1 Introduction
Artificial Neural Networks (ANNs) have demonstrated significant success in real-world ap-
plications such as object recognition, image classification, autonomous driving, and natural
language processing [2, 6, 22, 37]. Recent advancements, such as OpenAI’s ChatGPT, have
increased public interest in the possibilities enabled by ANNs [40]. However, the growing
adoption of such models is accompanied by significantly higher energy requirements.

A core issue behind this inefficiency is the large number of parameters in state-of-the-art
ANNs, which lead to impressive accuracy but also to substantial memory and computational
resource demands [2, 22, 37, 42]. Consequently, energy consumption increased, particularly
in over-parameterized Deep Neural Networks (DNNs) [6, 31, 40, 41, 43]. Considering that

© 2025. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Blalock, Gonzalez~Ortiz, Frankle, and Guttag} 2020

Citation
Citation
{et~al.} 2021

Citation
Citation
{Ko, Oehmcke, and Gieseke} 2019

Citation
Citation
{Vadera and Ameen} 2022

Citation
Citation
{Yang} 2024

Citation
Citation
{Blalock, Gonzalez~Ortiz, Frankle, and Guttag} 2020

Citation
Citation
{Ko, Oehmcke, and Gieseke} 2019

Citation
Citation
{Vadera and Ameen} 2022

Citation
Citation
{Yeom, Shim, and Hwang} 2021

Citation
Citation
{et~al.} 2021

Citation
Citation
{Rachwan} 2022

Citation
Citation
{Yang} 2024

Citation
Citation
{Yang, Chen, and Sze} 2017

Citation
Citation
{You} 2019



2 SCHNELL ET AL.: ENERGY SAVINGS PLAYING THE LOTTERY

the energy sector contributes approximately 34 % to global greenhouse gas emissions, there
is a pressing need for more energy-efficient ANNs [24].

Among various compression techniques, knowledge distillation [14] and pruning [2, 6,
7, 9, 12, 23, 42] stand out. However, knowledge distillation may not sufficiently eliminate
redundancy and achieve significant compression [1, 3], making pruning a more promising
avenue for compression. The Lottery Ticket Hypothesis (LTH), introduced by Frankle and
Carbin [7], demonstrated that sparse sub-networks derived from a larger network can achieve
similar or better performance. While LTH traditionally applies unstructured pruning (i. e.,
setting weights to zero), our work instead explores the effect of completely removing param-
eters via structured pruning [31]. Moreover, the focus of this study is the measured reduction
in energy consumption resulting from the implementation of structured pruning techniques.
In addition, we focus on convolutional layers, known to be energy-intensive [41], and apply
a novel combination of structured pruning and LTH principles.

Our methodology integrates the iterative pruning process with reinitialization of weights
from the original network, as proposed by the LTH, with the concept of structured pruning
to remove neurons, as outlined by Hu et al. [16], without necessitating the implementation
of sophisticated layer and neuron selection strategies. Instead, we employ a straightforward
approach of searching for the lowest mean weights between neurons, as these neurons have a
limited impact on the network’s output. We show that this strategy can produce sub-networks
with significantly fewer neurons while retaining – or even improving test accuracy. Fur-
thermore, we validate our method using real GPU energy measurements during inference,
demonstrating that energy consumption per sample can be reduced by over 40 % without
compromising accuracy. This reduction not only lowers the environmental footprint of Neu-
ral Networks (NNs), but also makes them more cost-effective for practical deployment.

2 Related Work

2.1 Pruning

The concept of pruning dates back to the 1960s [17, 18]. A major milestone was achieved
by LeCun et al. [23], who introduced weight elimination using second-order derivatives.
Later, Han et al. [12] proposed pruning small-magnitude weights to reduce model complex-
ity. Recent works have explored various pruning strategies that achieve efficiency gains with
minimal performance loss [16, 26, 28]. In particular, Hu et al. [16] developed a structured
pruning technique based on the Average Percentage of Zeros (APoZ), identifying and re-
moving neurons with minimal activation on a validation set. They found that reinitializing
pruned networks with original weights prior to retraining helped retain accuracy, provided
that pruning steps were not too aggressive.

In the context of transfer learning, Molchanov et al. [28] introduced pruning strategies
that remove entire parameters from the network.

Pruning techniques are commonly classified as either unstructured or structured [2, 31,
32]. Unstructured pruning zeroes individual weights, which can reduce storage, but does not
necessarily lead to computational gains unless the hardware supports sparse matrices [8].
Structured pruning, by contrast, removes neurons or entire layers, enabling real speedups
and memory savings [26]. Structured pruning also impacts energy consumption, which in
turn affects carbon emissions [38]. For instance, Widmann [38] report energy savings of
59 % with only 3 % accuracy loss when pruning 75 % of a network using structured APoZ
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pruning. Conversely, unstructured pruning alone showed no energy benefit unless heavily
optimized [38]. Timing of pruning also matters. While static pruning removes neurons after
training, dynamic pruning eliminates them during training [6]. In the context of structured
pruning, it is essential that the tensor sizes between layers are consistent, which may neces-
sitate pruning multiple layers, e.g., in the case of batch-normalization or attention heads in
transformers [15]. It is imperative to note that certain components may exhibit heightened
sensitivity to pruning, potentially resulting in substantial performance implications [10].

2.2 Lottery Ticket Hypothesis
The LTH introduced by Frankle and Carbin [7] hypothesizes that dense, over-parameterized
networks contain sparse sub-networks that can be trained to match original accuracy. The
identification of these sub-networks is achieved through an iterative pruning process, re-
setting remaining weights to their initial (prior-training) values and retraining the network.
This is achieved by masking zeroed connections from previous iterations. Therefore, LTH
is traditionally unstructured.Recent studies have investigated stability enhancements, along-
side the acquisition of insight into the pruning mechanism and the extension of applica-
tions to domains such as Natural Language Processing (NLP) and Spike Neural Networks
(SNNs) [2, 8, 20, 27].A notable extension of LTH is the Early-Bird (EB) ticket concept [43],
which seeks to identify winning tickets early in training through their proposed mask dis-
tance metric and reduced precision schemes, avoiding the need for full retraining cycles.

2.3 Quantization
Network quantization reduces the numerical precision of weights and / or activations, e.g.,
from 32-bit floats to 8-bit integers [6]. This has been shown to improve memory usage,
computation time, and bandwidth, while concomitantly achieving a substantial reduction in
energy consumption [6, 11]. Gholami [10] reported that the use of 8-bit integer quantization
resulted in speed enhancements of up to 5× and energy savings of up to 30×. Because
quantization works independently, it can be used in combination with other technologies
such as pruning or knowledge distillation to optimize benefits [6].

2.4 Neural Architecture Search
Neural Architecture Search (NAS) automates the design of efficient network architectures
within a predefined space [5]. Unlike pruning, which reduces an existing pre-trained model,
NAS constructs a new model before training from the ground up [4, 5].

However, NAS and pruning are not mutually exclusive [4, 25]. For example, NAS can be
used to design an initial compact and efficient architecture, which can then be further refined
through pruning to eliminate redundancies and increase computational efficiency [4].

2.5 Energy Measurements
There is increasing attention on the energy consumption of neural networks, considering
aspects such as network type (e.g., SNNs vs. DNNs) and the energy used during train-
ing, pruning, and inference [20]. Energy consumption can be assessed through estimation
tools like the CodeCarbon emissions tracker [31, 33] or through real-world measurement
devices [43]. In a study by Yang et al. [41], hardware-based energy measurements were
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Figure 1: Unstructured and structured pruning variants. Inspired by Figures 4 and 5 from Hu
et al. [16].
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Figure 2: ResNet50-Bat on CIFAR-100: test accuracy, energy usage, and throughput across
network sizes. The x-axis on all plots shows the network size ranging from 100 % to 0 %.

used to guide pruning decisions by analyzing multiply and accumulate (MAC) operations
and memory access patterns of neurons or a group of weights. We do not measure any CO2
reduction or cost saving, as these values are not constant: they change from one place to
another, and might change much over time.

3 Method
This paper presents a method for structured, static, and iterative pruning based on a simple
yet effective neuron relevance criterion: the lowest mean weights. The following subsections
describe our pruning method, energy measurement setup, and the overall neuron removal
strategy.

3.1 Pruning Method
Unlike the original LTH [7], which uses unstructured pruning by setting weights to zero, our
approach removes neurons entirely from the network. This qualifies as structured pruning

Citation
Citation
{Hu, Peng, Tai, and Tang} 2016

Citation
Citation
{Frankle and Carbin} 2019



SCHNELL ET AL.: ENERGY SAVINGS PLAYING THE LOTTERY 5

and affects both the layer being pruned and the subsequent layers. We adapt the structured
pruning principle from Hu et al. [16], who use the APoZ metric, but simplify the process
by introducing the lowest mean weight metric to evaluate layer and neuron relevance. Previ-
ously, we investigated a method called percentile masking, inspired by APoZ. This technique
masked neuron weights below a percentile threshold into binary values and counted zeros per
neuron to determine importance. However, the lowest mean weight method produced more
stable sub-networks with similar or improved performance, while being computationally
more straightforward.

In the lowest mean weight method we define the mean of a neuron’s weights as meanl,n =
1

k·p ∑
p
c=0 ∑

k
j,i=0 ∥Al,n,c, j,i∥, where Al,n,c, j,i is the convolution weight at layer l, neuron n, input

channel c, and spatial location ( j, i).
This choice is grounded in the observation that neurons with higher mean weights often

contribute more significantly to activations in subsequent layers.
The pruning process proceeds as follows in each pruning iteration. First, we select the

layer by computing the mean weights for all layers and select the one with the overall lowest
mean value. Second, we select the neurons by ranking neurons within the selected layer
based on their mean weights. Neurons with the lowest mean weights are considered the least
important. And third, we prune the selected neuron and adjust connected layers. We repeat
this pruning process until a predefined neuron pruning percentage is achieved or until the
layer is pruned to the maximum.

The neuron pruning percentage is introduced to establish a quantitative metric to define
the degree of aggressiveness of pruning the selected layer in each pruning iteration.

3.2 Energy Measurement
3.2.1 Nvidia-smi tool

We use the nvidia-smi tool [30] to log GPU power draw every second. These values in-
clude baseline idle consumption, which we subtract from the raw readings to isolate network-
related energy use. Since nvidia-smi outputs watt-seconds, conversion to kilowatt-hours
is done using 1Ws = 1

3600000 kWh. We use this tool in our neural network measurements
to obtain a more accurate approximation of the actual consumption of the network and
its sub-networks running exclusively on the GPU. In a previous study, the validity of the
nvidia-smi measurements was established through a comparison with the readings ob-
tained from an external electricity meter. The accuracy is ±2% compared to the external
meter, but does not require manual inspections of an electricity meter.

3.2.2 Measurement Setup

Energy measurements are conducted using preloaded batches of random images on the GPU
memory. The random images have been established as equivalent in dimension to the original
dataset. Batch sizes are optimized per sub-/network in order to maximize the throughput
of the GPU. The duration of each measurement is fixed at 5 minutes to ensure consistent
and representative energy readings, without incurring long runtimes via nvidia-smi or
electricity meter. Optimizing batch size for throughput is critical, as smaller pruned networks
are capable of processing a larger volume of data per second on a given amount of memory.
This results in a lower energy consumption per sample, despite a comparable total power
draw.
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(a) ResNet50-Bat on CIFAR-100: gains in energy per
sample and sample throughput. Gains are calculated
by comparing performances to that of full networks.
Gain Energy per Sample indicates the energy reduc-
tion used per sample. Gain Samples refers to the in-
crease in the number of images that can be processed
by the sub-networks.
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(b) ResNet50-Bat on CIFAR-100: test accuracy vs.
energy per sample. This plot displays the relation-
ship between test accuracy and energy consumption
per sample for all sub- and full-networks. The box
plot at the top shows the median, lower and upper
quantiles, with the whiskers representing the 1.5 in-
ner quantile range and the dots indicating outliers in
the data.

Figure 3: ResNet50-Bat on CIFAR-100.

3.3 Neuron Removal Algorithm

Our algorithm combines the LTH iterative pruning with structured pruning from Hu et al.
[16], using the lowest mean weight metric for neuron removal. Our objectives of attaining
accuracies analogous to those of the original network are congruent with the ones of of [16]
and [7]. Disparities between unstructured and structured pruning are illustrated in Fig. 1.

We used the same experimental process for both dataset. We can summarize it as follows.
We start by selecting the network architecture and dataset. Then, we train the network until
the validation accuracy converges at a learning rate of 0.001. Once this is done, we identify
the layer and the specific neurons for pruning based on the lowest mean weight method, in
addition to those already pruned. Then, if the network has more than 5% of its initial weight
count, we reset the model’s weights to their initial values, and prune selected neurons by re-
moving output channels (weights/bias) of the selected neurons, adjusting the input channels
of the subsequent layer, and updating architecture-specific layers, e.g. batch normalization
and resampling layers to preserve network integrity. We then evaluate accuracy on the test
data and perform energy measurements via nvidia-smi on artificially generated random
dataset. We repeat this process, starting from the training phase, until over 95 % of the
network is pruned or until all convolutional layers have only one remaining neuron.

4 Experimental Setup

4.1 CIFAR-100 Dataset

The CIFAR-100 dataset contains 60,000 images in 100 categories. Each image is 32× 32
pixels and belongs to one of 600 images per class. Its compact size and broad use make it
ideal for benchmarking.
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Table 1: Comparison of our adapted ResNet-50 architectures to the original.

Original ResNet-50 Our ResNet-50 variants

Convolutional layers 53 65
Fully-connected layers 1 1

Total layers 54 66

4.2 Dataset of Pages from Early Printed Books with Multiple Font
Groups

This dataset includes over 35,600 images of book pages from the 15th to 18th century. These
images have been captured in a variety of high resolutions and classified into ten font group
classes plus two noise classes [34, 35, 36]. The labels are expert-annotated and often multil-
abel, with strong class imbalance [29]. The dataset was selected due to its substantial differ-
ence from CIFAR-100, both in content and volume, with the former exceeding 44 GB. Fur-
thermore, it highlights the importance of energy-efficient network architectures, with direct
applications in large-scale historical document classification tasks, such as those conducted
in state libraries, where millions of unlabeled pages must be processed. To accommodate
GPU memory constraints, we resize training images to 320×320 for the purpose of achiev-
ing better training throughput. In addition, the dimensions of the validation and test images
are limited to a maximum width of 1000 pixels, thereby restricting validation and test batch
sizes to 1. This dataset is denoted as Fonts in the following.

4.3 Network Architectures

Our models are based on ResNet-50 [13], a residual Convolutional Neural Network (CNN)
that learns H(x)−x using skip connections. To alleviate dimensionality dependency between
building blocks, we added 1×1 resampling layers in every building block [1]. Table 1 shows
the difference in the number of weight layers from our architectures to the original ResNet-
50. We further use a modified version called ResNet50-Bat, which halves the neurons in
the third convolutional layer of each block, and adds dropout before the fully connected
layer. The ResNet50-Bat model was employed to attain a higher reference test accuracy than
the standard ResNet-50 on the CIFAR-100 dataset. Both models use LeakyRectified Linear
Unit (ReLU) activations [19, 39] to mitigate the dying ReLU problem. Furthermore, we only
apply cropping and rotation as data augmentation.

5 Results

This section presents the results of our structured pruning method applied to two datasets:
CIFAR-100 and Fonts. We assess both classification accuracy and energy consumption, using
sub-networks derived from ResNet-50 and ResNet50-Bat models. All networks were trained
using the Cross-Entropy (CE) criterion and the Adaptive Moment Estimation (ADAM) op-
timizer [21]. Training data was split 80/20 into training and validation sets. Pruning was
applied iteratively with a neuron pruning percentage of at least 70 % to avoid excessively
small pruning steps. No fine-tuning was applied after pruning; hence, reported results reflect
raw performance of pruned networks.
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Figure 4: ResNet-50 on Fonts: test accuracy, energy usage, and throughput across network
sizes. The x-axis on all plots shows the network size ranging from 100 % to 0 %.

For the CIFAR-100 dataset, five pruning runs were performed using ResNet50-Bat on
the CIFAR-100 dataset. Runs 1 and 2 used 40 training epochs; the remaining runs used 50
to ensure convergence in smaller sub-networks. Most runs used a 90 % neuron pruning per-
centage, with adjustments down to 70 % for finer-grained pruning below 83 % network size.
Figure 2 shows that sub-networks around 75 % retain comparable test accuracy. However,
pruning beyond this threshold causes performance to drop significantly. The pruning steps at
∼45 % network size led to a sharp drop in accuracy, suggesting the removal of critical neu-
rons. The energy consumed per sample reduced by ∼50 % at around 70 % network size. This
is achieved because the absolute energy consumption slightly decreases and the throughput
in smaller networks increases. Figure 3(a) compares gains in energy and throughput. Sub-
networks around 75 % network size reduce energy per sample by ∼40 % and increase sam-
ple count by approximately 50 %, while maintaining most of the test accuracy. Figure 3(b)
summarizes pruning performance: lower energy per sample with only minor losses in test
accuracy is preferable. For example, in Run 3, the energy usage decreased from 2.1e−5 to
0.9e−5 [Wh/sample] with only 7 percentage points lost in accuracy.

For the font dataset, three pruning runs were conducted using our adapted ResNet-50 on
the Fonts dataset. Each sub-network was retrained for four epochs between pruning steps. A
90 % neuron pruning percentage was used throughout.Figure 4 shows that networks pruned
below ∼40 % network size exhibit unstable accuracy, but reduce energy per sample by almost
50 %. Total energy use remains relatively flat due to constant 5-minute GPU runtime at
high utilization.Gains shown in Fig. 5(a) confirm that 40 % networks can cut energy per
sample by about 40 % while increasing throughput by 60 % or more and considering only
a small decrease in test accuracy.Figure 5(b) provides the final accuracy/energy trade-off
visualization. Sub-networks with test accuracies above 90 % consumed less than half the
energy per sample, with Run 1 delivering particularly strong results.
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(a) ResNet-50 on Fonts: Gains in energy per sam-
ple and throughput are measured relative to the full
network. Gain Energy per Sample denotes reduced
energy use per sample, and Gain Samples indicates
higher processing throughput.
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(b) ResNet-50 on Fonts: test accuracy vs. energy
per sample. The plot shows test accuracy against
energy use per sample for all networks. The top box
plot marks medians, quantiles, whiskers (1.5 IQR),
and outliers.

Figure 5: ResNet-50 on Fonts

6 Discussion and Conclusion

Our structured pruning method achieved over 40 % reduction in energy consumption per
sample across both architectures and datasets, while maintaining competitive test accuracy.
Some sub-networks even slightly outperformed the full models – an effect also reported
in Frankle and Carbin [7] – though the margins are small. Despite potential modest accuracy
drops, they may still be viable for deployment depending on application constraints, particu-
larly when energy efficiency is prioritized. Both ResNet-50 and ResNet50-Bat yielded com-
parable energy savings, with stronger benefits on the Fonts dataset. In this case, ResNet-50
was more stable under aggressive pruning. From Figures 2 and 4, we note that ResNet50-Bat
peaked at roughly 2.3e−5 [Wh/sample], whereas ResNet-50 reached approximately 2.51e−4

[Wh/sample]. This means that while both models show a 40 % gain, the absolute benefit in
raw energy usage is higher for ResNet-50. The improvement amounts to 1.3e−5 [Wh/sample]
for ResNet50-Bat and 1.5e−4 [Wh / sample] for ResNet-50. One limitation observed is the
handling of the neuron pruning percentage. In instances where heavily pruned layers are
subsequently selected, minimal alterations in network size occur while potentially crucial
neurons are removed. This can be seen in Fig. 5(a), where denser sub-network point clouds
sometimes exhibit unexpected drops in accuracy. Overall, these results serve as a baseline
for the energy-saving potential of structured pruning methods. It is important to emphasize
that no fine-tuning was applied after pruning, suggesting further improvements are likely
achievable. Future work may incorporate methods like EB tickets [43] or pruning mecha-
nisms as proposed in Rachwan [31], which dynamically select the neuron pruning percent-
age and may address current limitations. We envision broader adoption of structured pruning
in real-world scenarios. A practical example would be national or academic libraries, where
neural networks are applied at scale for classification tasks in digitized historical archives.
Energy-efficient models can play a crucial role in reducing operational costs and environ-
mental impact, especially as the energy sector remains responsible for approximately 34 %
of global greenhouse gas emissions [24]. For our future research, we plan to explore quan-
tization alongside pruning [6], as well as dynamic pruning strategies where metrics like the
neuron pruning percentage are adjusted iteratively based on feedback during pruning.
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