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Abstract

Air pollution poses significant environmental and public health challenges. Monitor-
ing air quality is difficult, particularly in regions without ground-based stations. Satel-
lite data provide a scalable alternative by offering consistent, publicly accessible envi-
ronmental measurements. This research proposes a multimodal deep learning model
for predicting tropospheric NO; concentrations using Sentinel-2 multispectral imagery,
Sentinel-5P NO, data, and auxiliary atmospheric features such as population density, al-
titude, and land classification. The model employs a MobileNetV 3 backbone for Sentinel-
2 inputs, a compact CNN for Sentinel-5P, and a fully connected network for tabular
features. These modalities are fused to predict pollutant concentrations. Trained on an
extensive European dataset, the model achieved an R? score of 0.685 in its base form, im-
proving to 0.73 with network customisation. Experiments show that combining all three
data sources improves predictive accuracy, with Sentinel-2 contributing the most. The
proposed model is computationally efficient, demonstrating potential for deployment in
regions with limited processing resources.

1 Introduction

Air pollution is a major environmental and public health concern, contributing to respiratory
illnesses, premature deaths, and climate change. The rise of industrialization and fossil fuel
use has intensified pollution levels globally, emphasizing the need for accurate air quality
monitoring. Traditional approaches rely on ground-based monitoring stations, which provide
localized data but suffer from limited spatial coverage, high operational costs, and mainte-
nance challenges. Satellite remote sensing offers a scalable alternative by providing atmo-
spheric measurements at regional to global scales. Platforms such as Sentinel-2 and Sentinel-
5P capture multispectral imagery and pollutant concentrations, enabling researchers to track
emissions, analyze trends, and model air quality. However, satellite data are limited in spa-
tial resolution (typically ~1 km), making fine-grained pollutant estimation difficult. Machine
learning (ML) techniques, particularly Convolutional Neural Networks (CNNs), have shown
strong performance in image analysis and feature extraction. Deep CNNs, however, can be
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computationally intensive, limiting their deployment in resource-constrained environments.
Transfer learning, which leverages pre-trained models for specific tasks, has emerged as an
effective approach to improve computational efficiency and predictive performance. Despite
these advances, the application of multimodal CNNs to satellite-based air quality modeling
remains underexplored. Integrating multi-sensor satellite data with ground-based measure-
ments can potentially improve air quality predictions. However, existing models often fail
to combine these heterogeneous data sources effectively or achieve high accuracy across di-
verse regions. There is a pressing need for scalable, accurate, and computationally efficient
air quality models that can provide predictions in areas lacking monitoring infrastructure.

2 Related Works

Air quality has traditionally been measured using ground-based monitoring stations, with ad-
ditional techniques introduced over time. A key challenge for these methods is the transport
of air over large areas, which limits spatial coverage [4]. Remote sensing addresses this issue
by enabling more accurate and spatially extensive measurements of pollutants. Satellites, in
particular, provide rapid, global-scale observation capabilities and are often preferred over
other platforms such as aircraft or drones due to their efficiency and data quality.

Early approaches to remote sensing-based air quality modeling include Land-Use Re-
gression (LUR) and Kriging. LUR is a statistical method that estimates spatial variations in
pollution by relating air quality measurements to land-use characteristics. A notable applica-
tion was the Small Area Variations in Air quality and Health (SAVIAH) study, which linked
traffic-related NO; concentrations over a two-week period using GIS data in the Netherlands
[2]. Kriging, also known as Gaussian Process Regression, is a geostatistical interpolation
technique that predicts values at unsampled locations based on surrounding measurements,
providing both predictions and variance estimates [13].

However, these traditional approaches have limitations. LUR relies on GIS datasets,
which vary in availability and granularity across regions, while Kriging depends on the den-
sity of ground stations. LUR models also struggle to separate the influence of multiple pol-
lutants, often producing correlated predictions. Advances in machine learning (ML) using
satellite data have addressed many of these issues. For instance, Young et al. [15] compared
traditional methods with ML models using satellite inputs and observed improvements in
predictive accuracy.

Initial ML applications for air quality using satellite imagery include Support Vector
Machines (SVMs) to identify spatial patterns in remote sensing images. In this study, SVMs
were compared with Maximum Likelihood Classifiers (MLC) and Decision Tree Classifiers
(DTC). MLC was found to be limited by its assumption of normally distributed class signa-
tures. The input data consisted of spatially degraded Thematic Mapper (TM) images with six
spectral bands (1-5, 7) converted to top-of-atmosphere reflectance. Kernel selection played a
critical role in SVM performance, with experiments showing that decision boundaries—and
thus prediction accuracy—were highly sensitive to kernel type and parameters. SVMs ulti-
mately outperformed both MLC and DTC approaches.

Deep learning (DL) has transformed air quality modeling, offering improved perfor-
mance over traditional statistical methods [17]. Early approaches included Deep Belief
Networks (DBNs), which capture hierarchical representations and perform well with lim-
ited labeled data [14]. However, DBNs are computationally expensive and often lack inter-
pretability.
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Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM)
and Bidirectional LSTM (BiLSTM) architectures, model temporal dependencies effectively,
improving prediction accuracy for short-term pollutant trends [3, 6, 7, 8, 12]. Hybrid frame-
works combining LSTMs with CNNs, Autoencoders, or transfer learning further enhance
performance and generalization across heterogeneous datasets.

Transformer models, using self-attention mechanisms, provide superior long-term tem-
poral modeling and robustness to missing data. Models such as Informer and ResInformer
demonstrate state-of-the-art performance for sequence-based pollutant prediction, though
they require large datasets and high computational resources [1].

Convolutional Neural Networks (CNNs) excel at capturing spatial dependencies from
satellite imagery [5, 11, 16, 18]. Early CNNs processed medium-resolution images, while
hybrid and multimodal CNN architectures, combining Sentinel-2 and Sentinel-5P data with
ground-based tabular features, have significantly improved pollutant prediction accuracy [9,
10]. CNNs, however, are limited in temporal modeling, motivating the use of CNN-RNN
hybrids for spatiotemporal predictions.

Overall, DL-based models have evolved from DBNs to CNN, RNN/LSTM, and trans-
former architectures, each providing complementary strengths: DBNs for unsupervised fea-
ture learning, CNNs for spatial modeling, RNNs/LSTMs for temporal dynamics, and trans-
formers for scalable sequence modeling. These advances have enabled more accurate, scal-
able, and multimodal air quality estimation across diverse regions.

3 Methodology

3.1 Dataset

The dataset utilized includes tabular data that exploits important information about the ground
measurement centers such as altitude, population density station and area type as well as Eu-
ropean Space Agency’s (ESA) Copernicus missions Sentinel-2 and Sentinel-5P data during
the 2018-2020 timeframe. Each satellite measurement, which is about 1.2 x 1.2km in size,
covers about 3100 locations in Europe and about 100 on the US West Coast. The loca-
tions were meticulously chosen so that the measurement is centered at the location of an air
quality measurement station on the ground, making it possible to analyze spatiotemporally
aligned remote sensing and ground-based measurements The 12 Sentinel-2 bands have been
cropped to 120 X 120 pixels and unsampled to a resolution of 10m. Some regions have
multiple Sentine-2 images available. The images are grouped into folders based on their
regions and are stored as binary NumPy “.npy” files. By linking measurements from suc-
cessive satellite overpasses to a similar rectangular grid that spanned roughly 5X5km across
Europe, the Sentinel-5P data was already pre-processed. The Sentinel-5P data was linearly
interpolated to 10m resolution and cropped to 120X120 pixel around the locations of interest
so that the Sentinel-5P data (5X3.5km, rescaled to 5X5km) could be in the same type as
the Sentinel-2 (10m to 60m, upscaled to 10m) imaging resolutions. In accordance to ESA
recommendations, all measurements having a QA flag (qa value) below 75 were eliminated.
The Sentinel-5P data are arranged based on locations and stored as ‘.netcdf* files. Three
of these files, containing Sentinel-5P measurements at various temporal frequencies (2018-
2020, quarterly and monthly) are provided for each location. Eight text/numerical columns
made up the tabular data which were altitude (numerical), population density (numerical),
binary encoded features for rural, suburban or urban area and binary encoded features for
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whether the station was traffic, industrial or background monitoring station.

3.2 Preprocessing

The multimodal dataset was prepared through a structured preprocessing pipeline. First,
tabular descriptors and pollutant values were read from a central CSV and linked with cor-
responding Sentinel-2 and Sentinel-5P files, with missing NO, entries discarded. To reduce
I/O overhead, Sentinel-5P .netcdf files were indexed by station ID, and each sample was
stored as a multimodal dictionary containing tabular attributes, Sentinel-5P maps, Sentinel-
2 imagery, and metadata. Sentinel-2 images were reformatted from (H,W,C) to (C,H,W),
cropped to 120x120 pixels, and reordered to match BigEarthNet band conventions. All
modalities, including Sentinel-2 bands, Sentinel-5P inputs, tabular features, and pollutant
targets, were normalized using precomputed global means and standard deviations, with in-
verse transforms applied for interpretability of predictions. Data augmentation (random flips
and 90° rotations) was applied to Sentinel-2 and Sentinel-5P inputs to improve robustness.
Finally, NumPy arrays were converted to PyTorch tensors to enable GPU acceleration. The
dataset of 1,318 monitoring stations was split into 70% training, 15% validation, and 15%
testing, stratified by station ID to avoid location bias.

3.3 Model architecture

We propose several enhancements to the base AQNet architecture that integrates multi-
spectral Sentinel-2 imagery, tropospheric NO, maps from Sentinel-5P, and station-level tab-
ular data. The design builds on established CNN backbones but introduces domain-specific
adaptations to improve efficiency and prediction accuracy.

Sentinel-2 Backbone. Sentinel-2 inputs consist of 12 spectral bands cropped to 120x120
pixels and harmonized to 10 m resolution. A MobileNetV3 backbone was selected for its
efficiency in lightweight vision tasks. The input layer was modified to accept 12 channels
instead of RGB, and the classification head was replaced with a 640-dimensional feature
extractor suitable for regression.

Sentinel-SP Backbone. Tropospheric NO; inputs are processed by a compact CNN
designed for low-resolution, single-channel data. The network consists of two convolutional
layers (1—10 and 10— 15 channels) with ReLU activations and max pooling, followed by a
fully connected layer producing a 128-dimensional feature vector. This lightweight design
balances speed and expressiveness.

Tabular Backbone. Eight structured features (altitude, population density, and binary
encodings of area type and station type) are processed by a three-layer feedforward network
(8—16—32—32 dimensions), yielding a compact 32-dimensional representation of contex-
tual attributes.

Fusion and Regression. Sentinel-2 and Sentinel-5P features are concatenated and passed
through a three-layer “satellite head” (768 —384—192—96 dimensions) with ReLU activa-
tions, compressing the joint representation. This output is fused with the 32-dimensional
tabular vector to form a 128-dimensional feature, which is passed through a regression head
with dropout regularization to produce the final pollutant prediction.

Fine-tuning. Several architectural variations were explored. The inclusion of a Squeeze-
and-Excitation (SE) block in the Sentinel-5P backbone improved performance by reweight-
ing channel importance. Replacing ReLU with GELU activations further enhanced accuracy
at the cost of higher computation. The final configuration provided a balance of predictive
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power and efficiency, suitable for large-scale deployment. SE blocks recalibrate feature maps
by learning channel-wise attention weights, so that the model can give more importance to
pollutant-relevant spectral and spatial features, while suppressing less informative signals.
This mechanism enhances multimodal fusion by aligning the importance of different feature
channels. On the other hand, for AQNet’s multimodal architecture and fusion head, using
GELU provides smooth, probabilistic gating that preserves informative small and negative
signals across modalities, improves gradient flow, lowers training variance, and often out-
performs ReLLU in modern LayerNorm-based setups, providing more stable fine-tuning.

4 Results
4.1 Base Model

The original AQNet model was developed as a multimodal deep learning framework inte-
grating Sentinel-2 imagery, Sentinel-5P atmospheric data, and tabular ground-level data. The
base model employed a MobileNetV3-Small backbone, a compact CNN for Sentinel-5P, and
a three-layer MLP for auxiliary features. These streams were fused in a regression head to
predict NO; concentrations. Table 1 shows the results of the baseline AQNet model.

Across five randomized runs, the model demonstrated consistent performance. The mean
R? score was 0.685 (range: 0.662-0.703), with MAE between 3.53-4.02 ug/m> and MSE
between 22.07-33.52. Despite its lightweight design, the model exhibited robust conver-
gence behaviour, providing a strong baseline. Compared with Random Forest and XGBoost
baselines for tabular, AQNet achieves lower MAE (average 3.70 against 8.1 for XGBoost
and 8.7 for Random Forest) and higher R? (average 0.68 against 0.62 and 0.58).

Table 1: Performance of the base AQNet model across five runs.
Run R> MAE MSE

0.695 3.621 22.074

0.666 4.021 33.512

0.702 3.534 22.774

0.699 3.762 24.748

0.662 3.601 25.182

O N O R S

4.2 Impact of Model Customisation

Several enhancements were introduced, including SE attention blocks, GELU activations,
and refined Sentinel-2/5P backbones.

Base vs. Fine-tuned Model Performance Table 2 presents the results of the described
model. The fine-tuned AQNet outperformed the baseline, achieving a mean R? of 0.728 (best
run: 0.755), with reduced MAE (3.31 ug/ m?) and lower MSE (down to 18.4). The training
and validation curves showed stable improvement without significant overfitting.

Computational Efficiency Despite added complexity, runtime efficiency was preserved.
MobileNetV3 and SE blocks enabled lightweight computation, with only marginal increases
in training time. GPU memory usage remained within limits, and early stopping ensured
most runs terminated well before the 30-epoch cap.
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Table 2: Performance of the fine-tuned AQNet model.
Run R’ MAE MSE

0.739  3.31 19.2

0.744 321 18.4

0.740 3.35 18.6

0.715 343 189

0.720 3.32  18.7

(O S N S

4.3 Ablation Study

In order to evaluate which component of the fine-tuned AQNet contributed the most to the
performances of the model, an ablation study has been performed. The architecture has been
systematically tested by removing components to validate the importance on each on the
total accuracy of the model. Table 3 shows the results of the ablation.

Table 3: Ablation of fine-tuned AQNet.

Model Variant R?

Without Sentinel-2 0.63
Without Sentinel-5P 0.70
Without Tabular Data 0.68

Single Modality - Sentinel-5P  0.59
Single Modality - Tabular only 0.61
Fine-tuned AQNet 0.73

The fine-tuned AQNet achieves the best performance (R? = 0.73). Removing Sentinel-2
produces the largest drop (from 0.73 to 0.63), while removing Sentinel-5P results in a smaller
decline (from 0.73 to 0.70). Excluding the tabular branch lowers performance to 0.68. These
trends suggest that Sentinel-2 contributes the most to the model’s accuracy, likely due to
its higher spatial resolution and richer texture and spectral cues. Tabular features provide
important contextual priors that help stabilise predictions, especially when remote-sensing
inputs are ambiguous, while Sentinel-5P adds complementary information: its benefit is
modest in isolation but becomes more useful when combined with S2.

Single-modality baselines reinforce this interpretation: tabular alone reaches an R* of
0.61, outperforming S5P (0.59). Furthermore, S2+S5P improves over tabular (0.68 against
0.61), while S5P+Tabular only reaches the tabular-only baseline (0.61), implying that S5P
coarse signal is not sufficiently leveraged without the fine-grained structure from S2. The
full model improves from the S2+S5P variant (0.68) to 0.73, highlighting that the fusion
extracts patterns that each branch cannot provide alone.

S2 high-resolution spatial patterns likely drive the strongest gains due to how they en-
code fine-grained texture, edges, and morphological cues that can discern between land-
cover types and local structures. These details capture neighbourhood context and boundary
information that coarse signals can miss, enabling the model to learn sharper associations
between surface features and target variables. Rich spatial variability also reduces ambiguity
in homogeneous regions, improving discrimination and calibration. In multimodal fusion,
such spatial structure provides an anchor for aligning and interpreting complementary inputs,
allowing the network to exploit their relationships with greater precision.
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S Future Work and Application

These experiments highlight the effectiveness of multimodal architectures for air quality
modelling. Beginning with a strong baseline, architectural refinements boosted predictive
accuracy without major computational costs. for real world applications, AQNet’s multi-
modal design allows scalable deployment in cities where monitoring stations are sparse. For
instance, urban planners could use this fine-tuned AQNet architecture outputs to identify traf-
fic corridors, informing green infrastructure placement. Furthermore, public health agencies
could utilise the model for early-warning systems, delivering targeted alerts to vulnerable
populations. The lightweight MobileNet backbone further enables deployment on edge de-
vices, making the architecture suitable for real-time applications in developing regions.

Future work could extend AQNet by feeding fused representations into an RNN or Trans-
former. This would enable modeling lag effects, seasonal variations, and pollutant transport
dynamics. Furthemore, extending to multi-output regression for multiple pollutants, and
adapting the model for real-time, large-scale forecasting are also additional paths to improve
on the architecuture and expand the scope of the model for real world applications and air
quality monitoring systems.

6 Conclusion

This work evaluated and extended AQNet, a multimodal deep learning framework for pre-
dicting NO; concentrations from Sentinel-2 imagery, Sentinel-5P atmospheric data, and aux-
iliary ground-level features. Using MobileNetV3 backbones and lightweight convolutional
layers, the study demonstrated the effectiveness of fusing heterogeneous data streams for
scalable air quality modelling.

The baseline AQNet achieved a mean R? of 0.685 with low error margins, validating its
ability to capture spatial and atmospheric signals. Architectural enhancements—including
SE attention blocks, GELU activations, and improved backbone configurations—pushed per-
formance beyond R?> = 0.73, with accuracy gains most pronounced in the Sentinel-2 process-
ing stream. Importantly, these improvements were achieved with minimal increases in com-
putational cost, preserving efficiency while enhancing predictive strength. These findings
align with sustainable urban development goals, as fine-tuned AQNet provides a scalable
solution for air quality monitoring in regions lacking dense sensor networks. By integrating
remote sensing and ground data, the model supports data-driven policies in urban planning,
environmental justice, and public health resilience.

Overall, the project demonstrated the potential of multimodal neural architectures for
accurate and lightweight air quality prediction, providing a foundation for future extensions
such as temporal modelling, transformer-based attention, and multi-pollutant forecasting.
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