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Abstract

Cities need credible, comparable maps of rooftop photovoltaic (PV) potential to
support net-zero planning, asset targeting, and grid coordination. We present a data-
light pipeline that converts aerial imagery into planning-grade indicators by combining
attention-augmented U-Net segmentation with a principled pixel-to-ground scaling pro-
cedure and a simple, orientation-aware energy model. Trained on INRIA aerial tiles,
our Full-Attention U-Net achieves a test IoU of 0.874, outperforming baseline and skip-
attention variants. Converting masks to square metres using tile-wise metres-per-pixel,
we validate areas against Google Earth measurements: mean error is 3.23% on georefer-
enced dataset crops and 11.02% on Google Static Maps tiles. The novelty of this work
lies in the integration of three elements: (i) a Full-Attention U-Net that improves seg-
mentation fidelity, (ii) an explicit pixel-to-ground scaling procedure that provides robust
geospatial accuracy, and (iii) the translation of rooftop masks into planning-grade PV in-
dicators such as installable capacity, indicative yield, and ward-level aggregates. Beyond
accuracy, the framework is intentionally data-light and scalable, remaining transferable
across cities without LiDAR or dense cadastral data. This makes the approach highly
policy-relevant, offering a pragmatic bridge between computer vision and urban sustain-
ability practice. While current assumptions are 2D (no explicit tilt, shading, or super-
structure masking), the approach offers a scalable bridge from computer vision to urban
sustainability practice. We outline extensions to incorporate 3D roof facets, shading, and
uncertainty propagation, and to validate against operational PV generation.

1 Introduction

Rooftop solar is one of the fastest ways cities can decarbonise electricity, cut bills, and im-
prove energy resilience without expanding land use. For planners and utilities, credible maps
of rooftop photovoltaic (PV) potential enable evidence-based zoning, target setting for net-
zero strategies, and grid reinforcement planning at street or feeder level [5, 11]. They also
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support social policy prioritising installations on public buildings and social housing to ad-
dress energy poverty and inform co-deployment with heat pumps and EV charging. Yet most
municipalities still rely on coarse assumptions or costly building-by-building surveys, cre-
ating uncertainty in capacity forecasts, siting decisions, and business cases for local energy
communities [6, 18].

Despite strong progress in computer vision for building and roof extraction, two gaps re-
main for real-world deployment. First, state-of-the-art (SOTA) rooftop segmentation models
often optimise pixel metrics but stop short of producing planning-ready outputs i.e., roof-
usable area, orientation-aware panel layouts, and kilowatt/kilowatt-hour estimates that local
authorities and distribution system operators (DSOs) can act on [14, 20, 21]. Second, scal-
ability and generalisation are under-discussed: many pipelines depend on dense cadastral
data, lidar, or city-specific calibration, which limits portability across jurisdictions and im-
agery providers. As a result, PV potential studies are difficult to compare across wards or
towns, and downstream artefacts (e.g., overestimation on complex roofs, inconsistent pixel-
to-ground conversion) propagate into capacity and carbon-savings estimates used by policy
makers [4, 14, 21].

We address these gaps with a modular, data-light pipeline that goes from aerial imagery
to planning-grade PV indicators. Using attention-enhanced U-Net variants trained on high-
resolution aerial data, we generate precise rooftop masks and convert them into geospatially
consistent roof polygons [14, 15]. A post-processing stage estimates usable area after bound-
ary setbacks and obstruction filtering, assigns feasible panel layouts by roof facet and as-
pect, and converts area to installable capacity (kWp) and expected annual yield (kWh) using
location-specific irradiance factors. Crucially, we aggregate building-level results to plan-
ning geographies (e.g., LSOA/ward) to produce the products decision-makers need: (i) PV
capacity/yield maps for scenario analysis; (ii) suitability scores to rank candidate public as-
sets; (iii) feeder-level demand-offset layers for DSOs; and (iv) carbon-abatement estimates to
track progress against net-zero plans. Validation against independent measurements demon-
strates reliable area estimates and stable performance on unseen neighbourhoods, supporting
transfer to new locales without extensive re-survey [7, 9].

The core novelty of this research lies not in a single component but in the integration of
three innovations into one pipeline. First, we design a Full-Attention U-Net that enhances
rooftop segmentation by sharpening boundaries and reducing background noise, outperform-
ing both conventional U-Net and skip-attention variants. Second, we introduce an explicit,
validated pixel-to-ground scaling procedure that converts segmented pixels into physically
meaningful square-metre areas, overcoming a key limitation of many prior PV-mapping stud-
ies that assume fixed resolution. Third, rather than stopping at pixel-level metrics, we trans-
late segmentation outputs into planning-grade PV indicators installable capacity, indicative
yield, and ward-level aggregates providing outputs directly useful for energy planners and
utilities.

The manuscript is organised as follows: Section 2 reviews related work on rooftop de-
tection, pixel-to-ground scaling, and imagery-based PV assessment; Section 3 details our
dataset, attention-augmented architectures, geospatial scaling, obstruction handling, and the
energy-modelling stack; Section 4 reports segmentation accuracy, area fidelity, and planning-
level indicators with case studies on siting, targeting, and grid coordination; and Section 5
concludes with implications for urban planning, key limitations, and future work, including
high-resolution shading, uncertainty quantification, and socio-economic adoption scenarios.
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2 Literature Review

2.1 Rooftop detection from overhead imagery
Deep learning has rapidly advanced rooftop and PV-array mapping in aerial/satellite imagery.
City-scale pipelines use semantic segmentation to delineate rooftops and derive solar-ready
area; for instance, Zhong et al. developed a deep-learning framework that reduced labeling
effort and generalized across diverse districts while estimating Nanjing’s rooftop capacity
[23]. Size-aware models explicitly target small PV arrays, Wang et al.’s Rooftop PV Seg-
menter (RPS) refines multi-scale features to better separate small solar modules from roof
background [19]. Recent transformer-based and self-/weakly-supervised approaches seek
stronger cross-domain generalization and reduced annotation cost, while Mask2Former-
style architectures have improved PV-module instance segmentation across heterogeneous
resolutions [8]. Public datasets and active-learning strategies further address domain shift
and rare-class imbalance [22]. Gaps. Many studies optimize either PV-panel detection or
generic building/roof extraction in isolation, with performance often tied to specific sensors,
regions, or ground sampling distances. Cross-city transfer remains brittle; instance-level
quality (shape/extent) can lag in cluttered urban scenes; and compute-heavy backbones hin-
der deployment at scale or on low-power devices. Our research addresses practical deploya-
bility with a lightweight attention U-Net that preserves boundaries while keeping inference
efficient, but like most 2D-only detectors still struggles where occlusions and complex roof
geometry dominate.

2.2 Pixel-to-ground scaling and geodesy considerations
Accurate rooftop area requires converting pixels to meters with awareness of map projec-
tion and zoom/resolution. A common approach in Web-Mercator maps uses the latitude-
and zoom-dependent ground resolution (meters-per-pixel), which is only locally valid and
degrades with latitude and off-nadir perspective [3, 16]. Production toolchains often avoid
this pitfall by consuming georeferenced imagery/tiles or projecting roof polygons to equal-
area systems before measuring [2]. Gaps. Many rooftop/PV studies gloss over scale prove-
nance or error propagation from pixel resolution to area especially when harvesting non-
georeferenced web tiles. In contrast, this research explicitly implements a pixel-to-ground
factor for Google Static Maps and validates area against Google Earth measurements, report-
ing mean errors of 11% (web tiles) and 3% (dataset imagery), highlighting both feasibility
and the need for careful scale handling.

2.3 Imagery-based rooftop PV assessment
At global scale, Joshi et al. combine machine learning and geospatial analytics to estimate
27 PWh-yr from rooftops, illustrating the policy value of consistent, high-resolution map-
ping [10]. City-scale methods increasingly fuse DL segmentation with 3D/DSM context
to capture shading, tilt, and usable roof patches; Ren et al. integrate deep learning with
a 3D-GIS irradiance analyzer and show that shading and availability jointly reduce annual
energy by up to 36% in dense Hong Kong, cautioning against additive reductions [17].
Orientation-aware PV potential models and end-to-end DL+GIS frameworks further improve
irradiance/production estimates when reliable DSMs/LiDAR are available [12, 13]. Project
Sunroof demonstrates an industrial-scale pipeline using aerial photogrammetry DSMs to
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compute per-pixel shading and technical potential [1]. Gaps. Many SOTA pipelines depend
on expensive 3D data or limited-coverage DSMs; others extrapolate energy from 2D seg-
mentation without explicit shading/tilt or empirical PV generation validation. Label scarcity
and domain shift also limit generalization.

2.4 Positioning this study
This research addresses the above gaps through an integrated, data-light pipeline. The nov-
elty lies in combining: (i) a Full-Attention U-Net that sharpens rooftop boundaries and re-
duces false positives, (ii) an explicit pixel-to-ground scaling procedure validated across geo-
referenced and web-map imagery, and (iii) the translation of rooftop masks into actionable
planning-grade PV indicators such as installable capacity, indicative yield, and ward-level
aggregates. Unlike prior work that optimises segmentation metrics alone, our framework
demonstrates how attention-based architectures and careful geodesy can deliver robust out-
puts transferable across cities. Crucially, the approach remains scalable and policy-relevant.
By avoiding reliance on LiDAR or dense cadastral data, the pipeline can be deployed in
data-sparse contexts, supporting net-zero planning, public asset prioritisation, and feeder-
level grid coordination. In this way, it offers a pragmatic bridge between computer vision
innovation and the evidence-based decision-making required in urban sustainability practice.

3 Methodology

3.1 Dataset and Pre-processing
We train and evaluate on the INRIA Aerial Image Labeling Dataset: 5000×5000-px ortho-
tiles at 0.3 m/px from 10 cities with building-footprint ground truth suited to rooftop delin-
eation and downstream PV estimation [14]. From 200 tiles, we generate 384×384 crops with
30% overlap, yielding 38.9k image–mask pairs; splits follow a standard train/val/test proto-
col. Basic normalization and tiling are applied; labels retain binary rooftops for a single-class
segmentation task.

3.2 Attention-Augmented Architectures
We compare three encoder–decoder variants built around U-Net. The baseline U-Net serves
as a strong pixel-level reference with plain skip connections and a 1×1 sigmoid head for bi-
nary masks. The Skip-AG U-Net inserts attention gates (AGs) on every skip path, following
[15]: decoder gating signals modulate encoder features so that only salient rooftop responses
are forwarded at concatenation, improving edge sharpness and suppressing background clut-
ter. Our Full-AG U-Net extends this idea by deploying AGs not only on skip paths but
also within encoder and decoder stages, providing end-to-end saliency control across scales;
empirically this yields the best boundaries and fewer false positives on complex roofs.

All models share a reference configuration: 384×384 inputs; encoder channels [64, 128,
256, 512] with two convolutions per stage; a 1024-channel bottleneck; and a symmetric
decoder with up-convolutions and paired convolutions, culminating in a 1×1 convolution
with sigmoid activation. We implement the networks in TensorFlow/Keras with modular
blocks; AGs are realized as additive attention using gating from the decoder to reweight
encoder activations before concatenation [15]. Training uses Adam optimization, binary
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cross-entropy, early stopping, checkpointing, and learning-rate reduction on plateau. We
report Accuracy, IoU, Dice, Precision/Recall, and ROC-AUC to capture both set-overlap
and boundary-sensitive behaviour. In practice, the Full-AG variant provides the most reliable
masks for downstream PV area estimation and layout simulation, while retaining inference
efficiency suitable for city-scale tiling.

3.3 Pixel-to-Ground Scaling
We convert pixel areas to m² using a Web-Mercator ground-resolution factor derived from:

mpp(z,ϕ) =
156543.03392 cosϕ

2z

Width/height and total ground area follow from this adjusted resolution; a per-pixel conver-
sion factor scales contour areas from masks. We validate areas against Google Earth mea-
surements: mean errors 11.0% on Google Static Maps tiles versus 3.2% on georeferenced
dataset crops, indicating planning-grade fidelity.

3.4 Obstruction Handling and Layout Constraints
Rooftop contours are extracted via OpenCV; oriented minimum-area rectangles provide facet
orientation. Panels are raster-packed as 1.7 m×1.0 m rectangles with 0.5 m spacing, and each
placement is validated to lie fully within the roof mask. North/south assignment uses dot-
products with facet vectors for directional statistics. Current masks do not explicitly remove
superstructures (e.g., vents, chimneys); shading, pitch and dynamic sun angles are not yet
modeled which is a limitation to this study.

3.5 Energy-Modelling Stack
For fast scoping, we aggregate placed-panel counts to capacity and simple yield proxies.
Per-section energy is estimated as:

Energy (W) = PanelCount×300×DirectionFactor×0.20

with UK-typical irradiance factors (south = 100%, north = 50%). Outputs include building-
level capacity/yield and ward-level aggregates for planning. Segmentation metrics (e.g. IoU)
are reported alongside area-error statistics to connect pixel accuracy with PV-relevant geom-
etry quality.

4 Results
Across 38.9k test image–mask pairs derived from INRIA aerial tiles, the attention-augmented
architectures consistently improved rooftop segmentation quality over a plain U-Net [14, 15].
The Full-AG U-Net achieved the highest test IoU (0.874) with strong validation accuracy
(0.965) and low validation loss (0.095), outperforming both the baseline U-Net (IoU = 0.773)
and the Skip-AG variant (IoU = 0.847). These gains align with the intuition that attention
improves boundary fidelity and suppresses background clutter in dense urban scenes. The
dataset scale and split protocol (38,988 crops; train/val/test) remained consistent to underpin
comparability across runs.
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To connect pixel-level accuracy to energy-relevant geometry, predicted masks were con-
verted to geospatial areas via a tile-wise metres-per-pixel factor and validated against Google
Earth measurements. Using Google Static Maps tiles, mean area error was 11.02%; using
INRIA/georeferenced crops, mean area error dropped to 3.23%, indicating planning-grade
fidelity when imagery is georeferenced and scale factors are applied consistently. These find-
ings are supported by per-building comparisons showing typical absolute percentage errors
in single digits for most roofs (e.g., 0.18–3.84%), with larger errors appearing on a minority
of complex geometries. Qualitatively, attention-enabled models converged faster and exhib-
ited reduced overfitting behaviour consistent with improved generalisation under varied roof
shapes and textures.

The pipeline’s energy estimation used deterministic rules (panel count × 300 W × direc-
tion factor × efficiency) to produce building-level capacity/yield proxies and aggregated indi-
cators for planning (wards/LSOAs). Because sampled roofs had no operational PV systems,
energy figures are predictive and presented as modeled potential only; empirical validation
against smart-meter/SCADA data was not possible in this study. Still, the close agreement
in area (a primary driver of capacity) suggests the outputs are suitable for preliminary siting,
targeting of public assets, and scenario screening by local authorities and DSOs. Table 1 con-
solidates training/validation metrics and IoU for the three models as reported in this research,
with Full-AG U-Net leading on all key indicators.

Table 1: Training/validation metrics and test IoU (as reported).

Model Train Acc Val Acc Val Loss IoU

U–Net (baseline) 0.944 0.937 0.170 0.773
Skip–AG U–Net 0.966 0.946 0.143 0.847
Full–AG U–Net 0.977 0.965 0.095 0.874

Table 2: Area estimation summary vs. Google Earth measurements.

Image Source Computed (m2) Estimated (m2) Error (%)

Google Static Maps 1264.97 1119.64 11.02
INRIA (georeferenced) 1871.49 1851.92 3.23

Table 2 summarises the aggregate area-error comparison between web-tile and georefer-
enced imagery. Results favour georeferenced inputs, as expected from reduced scale/projection
uncertainty. Figure 1 shows qualitative performance of the proposed model, using sample
image from the dataset.

The results show that attention mechanisms materially improve rooftop segmentation
quality and stability, translating into lower area error after pixel-to-ground conversion. The
3% mean error on georeferenced imagery is within tolerance for planning-grade PV screen-
ing, enabling credible capacity/yield mapping where detailed 3D data are unavailable. Re-
maining gaps stem from 2D assumptions (no explicit tilt/shading/superstructures) and the
lack of measured PV output for calibration. Addressing these will likely require (i) inte-
gration of 3D geometry (LiDAR/photogrammetry) for facet tilt and shading; (ii) uncertainty
quantification from segmentation through energy modelling; and (iii) validation against op-
erational datasets to reconcile modeled and realised yield directions. Overall, the evidence
supports a pragmatic conclusion: Full-AG U-Net provides the most reliable masks for down-
stream PV estimation; pixel-to-ground scaling is accurate when georeferencing is sound; and
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Figure 1: From left to right, Google Maps Computed Area, Estimated Area, and Panels
Placement Simulation

the data-light energy proxy is fit for early-stage planning, pending calibration to measured
generation in future work.

5 Discussion
This study introduced a data-light pipeline that combines attention-augmented U-Net seg-
mentation, explicit pixel-to-ground scaling, and the translation of rooftop masks into planning-
grade photovoltaic (PV) indicators. The key novelty lies in integrating these three compo-
nents into a unified framework that moves beyond benchmark optimisation and delivers out-
puts that are directly useful to planners and distribution system operators. Unlike many prior
approaches that emphasise segmentation accuracy in isolation, this pipeline demonstrates
how deep learning architectures can be linked to geospatial scaling and energy modelling to
produce decision-relevant insights. At the same time, several limitations should be acknowl-
edged. The reliance on 2D segmentation restricts the capacity to model roof tilt, shading,
and structural obstructions such as chimneys and dormers. These factors are critical in de-
termining usable area and effective generation potential. Integrating 3D data sources such
as LiDAR, photogrammetry, or DSMs would allow facet-based segmentation and shading-
aware modelling, addressing one of the main sources of error in 2D-only pipelines. Related
to this, current obstruction handling is basic and does not fully capture superstructures or
dynamic shadows; targeted detection and shadow-casting approaches could improve fidelity.
Another important limitation is that energy estimates remain theoretical. By deriving outputs
from geometry and simple irradiance proxies, the framework ensures portability across con-
texts but lacks empirical grounding. Future work will require operational validation against
real-world PV generation data (e.g., smart-meter or SCADA feeds). Such validation would
allow calibration of model assumptions, reduce systematic biases, and demonstrate applica-
bility at scale.

Uncertainty quantification also deserves explicit attention. At present, the pipeline pro-
duces deterministic indicators without error bounds. Incorporating probabilistic models or
Bayesian deep learning approaches could provide confidence intervals on both segmentation
outputs and energy estimates. This would improve transparency and give policymakers more
reliable evidence for planning decisions. Scalability is a major strength of this approach,
yet explicit testing across geographies with varied architectural typologies and climates is
needed to demonstrate robustness. Comparative studies in different cities would clarify
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adaptability and highlight contexts where retraining or fine-tuning is required. Finally, while
the Full-Attention U-Net achieved strong IoU and accuracy, broader benchmarking against
state-of-the-art models such as transformer-based or Mask2Former architectures, and re-
porting additional metrics such as precision, recall, and computational efficiency, would
strengthen the evaluation.

Overall, while limitations remain, the pipeline already offers a pragmatic, lightweight,
and transferable method that can support evidence-based planning. Its combination of ac-
curacy, scalability, and policy-relevant outputs highlights its potential as a bridge between
computer vision innovation and the urgent practical needs of urban sustainability.

6 Conclusion
This paper presented a data-light, end-to-end pipeline that converts aerial imagery into planning-
grade indicators of rooftop PV potential. By pairing attention-augmented U-Net archi-
tectures with a careful pixel-to-ground scaling procedure, our approach delivers accurate
rooftop masks and stable area estimates that can be translated into installable capacity and
indicative yields. In contrast to many state-of-the-art studies that optimise segmentation
metrics without operational outputs, we emphasised products that cities and distribution sys-
tem operators can act on building-level suitability, aggregated capacity/yield by ward, and
simple carbon-abatement signals to support targeting of public assets and energy-poverty
interventions. Empirically, attention mechanisms improved boundary fidelity and reduced
false positives, and georeferenced imagery enabled low area error suitable for early-stage
planning. While our energy calculations are intentionally simple to remain portable across
locales, they provide a credible first pass where detailed 3D data or measured PV generation
are unavailable.

A central strength of the proposed framework is its portability and scalability. Unlike
pipelines that depend on dense cadastral data, high-resolution LiDAR, or bespoke city-
specific calibration, our approach is deliberately data-light. This ensures that rooftop PV
assessments can be generated even in data-sparse contexts where municipal datasets are in-
complete or inaccessible. The ability to scale rapidly across jurisdictions without major pre-
processing makes the pipeline suitable for cross-city benchmarking, longitudinal monitoring,
and integration into national net-zero planning initiatives. Beyond technical accuracy, the
broader impact lies in bridging computer vision with urban sustainability practice. The out-
puts of this pipeline are designed in the language of policy capacity maps, indicative yields,
feeder-level demand offsets, and asset-prioritisation metrics rather than isolated computer
vision scores. In this way, our study provides a pragmatic bridge between research advances
and actionable planning insights. This alignment with decision-making needs strengthens the
role of AI-powered geospatial analytics in supporting energy transitions, carbon reduction
strategies, and evidence-based policy interventions.

The principal limitations are the current reliance on 2D geometry (no explicit tilt, shad-
ing, or superstructure masking) and the absence of validation against operational PV out-
put. Future work will integrate DSM/LiDAR-derived roof facets and shading, incorporate
uncertainty propagation from segmentation through energy modelling, and validate against
smart-meter or SCADA data. We also see value in domain-adaptation strategies for cross-
city transfer, temporal analyses to capture roof changes, and coupling with socio-economic
adoption models. Overall, the proposed pipeline offers a pragmatic bridge between com-
puter vision advances and urban sustainability practice enabling scalable, comparable, and
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decision-relevant rooftop PV assessments that support net-zero planning and grid coordina-
tion.
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