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Abstract

Accurate recognition of human emotions is critical for adaptive humancomputer in-
teraction, yet remains challenging in dynamic, conversation-like settings. This work
presents a personality-aware multimodal framework that integrates eye-tracking sequences,
Big Five personality traits, and contextual stimulus cues to predict both perceived
and felt emotions. Seventy-three participants viewed speech-containing clips from the
CREMA-D dataset while providing eye-tracking signals, personality assessments, and
emotion ratings. Our neural models captured temporal gaze dynamics and fused them
with trait and stimulus information, yielding consistent gains over SVM and literature
baselines. Results show that (i) stimulus cues strongly enhance perceived-emotion pre-
dictions (macro F1 up to 0.77), while (ii) personality traits provide the largest improve-
ments for felt emotion recognition (macro F1 up to 0.58). These findings highlight the
benefit of combining physiological, trait-level, and contextual information to address
the inherent subjectivity of emotion. By distinguishing between perceived and felt re-
sponses, our approach advances multimodal affective computing and points toward more
personalized and ecologically valid emotion-aware systems.

© 2025. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction
Emotion recognition is a central challenge in affective computing, with applications in adap-
tive HCI, virtual agents, education, and teleconferencing. Accurate recognition enables sys-
tems to respond more personally and context-sensitively. Yet most models still rely on sim-
plified representationsstatic snapshots or coarse labelsthat fail to capture the richness of real
interactions. Genuine perception unfolds dynamically, shaped by subtle attentional cues and
modulated by stable traits such as personality [20, 22, 33].

Theoretically, this lies at the intersection of two perspectives. Basic Emotion Theory
(BET) [13] treats emotions as discrete, biologically hard-wired categories, while construc-
tionist accounts such as the Theory of Constructed Emotion (TCE) [3] emphasize interactions
between core affect and conceptual knowledge. A layered view suggests both matter: ob-
servers may recognize expressed cues (BET) while constructing distinct internal experiences
(TCE).

This distinction is salient in the listeners perspective. In meetings, video calls, or virtual-
agent interactions, people interpret a talking face without full turn-taking dialogue. Such
contexts approximate dialogue while retaining one-sided attention. Our study targets this
scenario, where participants watched CREMA-D clips [5], allowing us to probe convergence
and divergence between perceived and felt emotions.

Key challenges remain: neglected temporal dynamics, under-modeled individual differ-
ences, and divergence between perceived and felt states [3]. To address them, we adopt a
framework distinguishing Expressed Emotions (Ee), Perceived Emotions (Ep), and Felt Emo-
tions (E f ). Encountering a stimulus involves recognizing Ee, forming a perception Ep, and
potentially experiencing a distinct E f . Modeling both Ep and E f in parallel is therefore
essential.

We introduce a multimodal approach that integrates eye-tracking data, temporal mod-
eling, and personality traits to predict Ep and E f in speech-based settings. Seventy-three
non-actor participants contributed (1) detailed eye movements (fixations, pupil size), (2)
self-reported Big Five profiles [15, 21], and (3) perceived and felt ratings per trial. Our
contributions are threefold:
1. Integration: Combining eye-tracking, personality, and temporal dynamics improves recog-

nition in talking-face scenarios.
2. Personality effects: Traits modulate both how participants perceive others emotions and

how they feel.
3. Modeling: A multimodal neural architecture achieves strong predictive performance for

both perceived and felt states, relevant for adaptive, user-centered affective computing.
By jointly modeling dynamic cues, stable traits, and the divergence between perceived

and felt states, our work moves beyond static or acted benchmarks. Although not fully
interactive, it reflects a critical real-world pattern: emotional decoding by the listener. This
perspective is essential for developing next-generation recognition systems that capture the
layered nature of human emotion.

2 Background
A wide range of studies has explored different modalities and methodologies, often achiev-
ing impressive accuracy levels. However, many of these works simplify emotion detection
by focusing on limited arousal and valence scores or by relying on highly controlled datasets.
In practice, real-world emotion perception is shaped by multiple, often interdependent fac-
tors such as personality traits, gaze patterns, and contextual cues. Consequently, several
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important challenges remain insufficiently addressed, especially regarding the use of non-
actor participants, individual differences, and temporal dynamics. These unresolved issues
echo long-standing theoretical debates, e.g. whether emotions are discrete biological kinds or
context-dependent constructions, highlighting the need for frameworks that link physiology,
attention, and conceptual labeling in a single pipeline.

2.1 Emotion Models
Two primary frameworks characterize how emotions are commonly modeled. Discrete
models rooted in Basic Emotion Theory (BET) [13] group emotions into basic categories
such as anger, disgust, fear, joy, sadness, and surprise. These labels are intuitive and map
neatly onto facial action patterns, but they often struggle to capture subtle or mixed states in
realistic settings [37]. Dimensional models, by contrast, represent affect along continuous
axes such as arousal and valence [29, 34], occasionally adding dominance as a third dimen-
sion. They allow nuanced representations, yet many engineering studies discretize them into
low/medium/high bins, obscuring fine-grained shifts.

Trade-offs and hybrid views. Discrete categories can over-simplify overlapping ex-
pressions, whereas purely dimensional schemes cannot easily separate qualitatively distinct
emotions that share similar core affect (e.g. anger vs. fear). Recent evidence shows that
subjective reports cluster into at least 27 categories connected by smooth gradients [12], mo-
tivating hybrid pipelines that first estimate core affect and then map it onto discrete concepts,
an approach compatible with Theory of Constructed Emotion (TCE) [3]. Following Van Hei-
jst et al. [41], we view BET and TCE as complementary layers: BET explains why evolution
endowed us with affect programs; TCE explains how any given episode is constructed from
core affect plus conceptual knowledge. This layered stance underpins our decision to model
both continuous (E f ) and categorical (Ep) labels in later sections.

2.2 Multimodal Emotion Recognition Approaches
Leveraging multiple modalities facial expressions, vocal prosody, and physiological signals
has yielded robust gains. For example, Kollias et al. [24] used multi-task audio-visual learn-
ing to detect valence, arousal, expressions, and action units. Reviews by Li et al. [26] and
Zhang et al. [44] report strong scores in controlled labs. Yet most pipelines conflate low-level
arousal cues with high-level categorical labels, ignoring the layered distinction between core
affect and conceptual emotion. Moreover, many still rely on actors or compress ratings to
binaries, limiting ecological validity.

Practical constraints persist: collecting EEG or GSR requires specialized hardware, so re-
searchers increasingly explore more accessible channels such as eye tracking or basic speech
while still capturing real-world complexity.

2.3 Eye-Tracking-Based Emotion Recognition
Among visual modalities, eye tracking uniquely captures both attentional focus (fixations)
and arousal (pupil dilation) [30]. Eye movements correlate with emotional states [36] and
reveal which facial regions observers deem salient [38]. Lu et al. [28] combined eye tracking
with EEG to boost accuracy. Attachment style and personality dimensions modulate pupil-
lary responses e.g. avoidant individuals show blunted dilation to happy faces, underscoring
the value of trait-aware models [40]. Nevertheless, lighting, eyewear, or calibration drift can
degrade data quality.
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2.4 Gaze Strategies
Eye-gaze strategies how observers allocate fixations across a face offer insight into emotion-
specific cues. Patterns vary by age [6] and gender [11]. Different regions (eyes vs. mouth)
carry diagnostic weight for particular emotions [35], and gaze direction modulates percep-
tion [27]. Systems focusing solely on the eyes may thus miss critical mouth cues, and vice
versa.

2.5 Stimuli and Participant Considerations
A recurring critique is reliance on actors displaying prototypical expressions [9, 31]. Such
datasets inflate accuracy yet transfer poorly to spontaneous contexts. Recruiting non-actors
and using more naturalistic stimuli improves ecological validity but increases variability.
Our talking face paradigm with non-actor participants aims to balance realism and control.

2.6 Temporal Dynamics in Emotion Recognition
Most pipelines still treat emotions as static snapshots, ignoring their evolution. Wang et
al. [42] emphasize the need for sequence modeling to capture rapid affective transitions;
without temporal context, fleeting cues may be misinterpreted.

2.7 Personality and Emotion Recognition
Personality, typically the Big Five shapes both expression and perception [23, 43]. Neurotic
individuals fixate on negative content; extraverts seek positive cues [10]. Eye-tracking stud-
ies now infer personality traits themselves [1, 7, 33], paving the way for adaptive systems.
These advances raise privacy concerns and demand careful trait inference.

2.8 Personality-Inspired Eye-Tracking-Based Emotion Recognition
Incorporating personality scores can improve gaze-based emotion recognition. High-neuroticism
observers linger on negative features [8]; extraverts scan positive cues [18]. Real-world
validations remain scarce, and challenges include maintaining calibration and safeguarding
privacy. Nevertheless, personality-aware pipelines represent a stride toward user-centric,
empathetic computing.

In sum, emotion-recognition pipelines still over-rely on acted stimuli, neglect individual
differences, and ignore layered temporal dynamicsgaps our study addresses by combining
naturalistic talking-face stimuli with eye-tracking and personality traits in a BETTCE frame-
work.

3 Dataset Collection and Preprocessing
3.1 Participants
We recruited 73 participants (52 males, 21 females; mean age 27.4± 6 years). All partici-
pants reported normal or corrected-to-normal vision and no neurological disorders. Partic-
ipants came from diverse educational backgrounds (see Table 1). The participants agreed
and signed the informed consent following the university’s ethical guidelines. Although this
sample provides educational diversity, we note a moderate gender imbalance and a relatively
young average age, which may limit broader generalizability.

3.2 Experimental Design and Procedure
We simulated the listening aspect of a conversational setting where participants engaged with
dynamic, emotionally expressive stimuli. Each participant completed 88 trials (4 practice
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(a) Experimental setup (b) Stimulus frame (c) Rating scales (d) Facial landmarks
and ROIs

Figure 1: (a) experimental setup with eye tracker, (b) example stimulus frame from
CREMA-D, (c) 9-point arousal/valence rating scales, and (d) facial landmarks extracted by
OpenFace [2] partitioned into multiple ROIs.

Table 1: Participant demographics (N=73).
Gender (M/F) Avg. Age Glasses College Bachelor Master PhD
72% / 28% 27.4±6 33% 28% 43% 19% 10%

and 84 main) in random order. Stimuli were 84 video clips from the CREMA-D dataset [5],
featuring 91 actors (48 male, 43 female) aged 20–74, each portraying one of six basic emo-
tions (Anger, Disgust, Fear, Happy, Neutral, Sad) at varying intensities. The selected clips
balanced emotions and actor demographics to enhance expressiveness and generalizability.

To approximate face-to-face interaction, a short written scenario was displayed before
each video, prompting participants to imagine conversing with the individual shown. This
contextual priming aimed to increase engagement and emotional alignment, despite the lack
of true turn-taking. The use of short textual prompts was intended not only to simulate
real conversational framing but also to standardize participants cognitive approach, ensuring
consistent engagement across trials rather than replicating spontaneous dialogues.

Eye-tracking data were recorded using a GP3 HD eye tracker at 150 Hz. The eye tracker
was calibrated for each participant with a standard 9-point procedure. We synchronized data
collection with stimulus presentation via the Lab Streaming Layer (LSL) to ensure precise
alignment between eye-tracking data and stimulus onset.

Figure 1(a) illustrates the experimental setup, with the participant seated in front of the
monitor and wearing sensors.

Before starting the trials, participants completed the BFI-44 questionnaire [15] to as-
sess openness, conscientiousness, extraversion, agreeableness, and neuroticism. After each
video, participants rated their perceived and felt emotions on 9-point Likert scales for va-
lence (1 = very negative, 9 = very positive) and arousal (1 = very calm, 9 = very excited). We
chose a 9-point scale for its higher resolution, capturing more subtle affective nuances [4, 25]
compared to smaller scales. These self-reported ratings form the ground truth labels for our
emotion recognition models.

3.3 Data Preprocessing and Feature Extraction
Preprocessing involved quality filtering (blinks/tracking loss), normalization of gaze coor-
dinates, and baseline correction of pupil size. For each trial we extracted: fixation metrics
(duration/dispersion), pupil metrics (mean, min, max, variance), saccadic metrics (ampli-
tude, duration, peak velocity, acceleration), gaze regions (eyes, eyebrows, nose, mouth, out-
side, from OpenFace [2]), environmental variables (ambient light, temperature, stimulus
brightness), and personality traits (BFI-44, scaled to [0,1]). These features span dynamic
gaze signals, static trait/context variables, and categorical stimulus labels (Table 3).
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Table 2: Feature inventory.
Modality Variables Dim. Temp. Notes
Eye-tracking FixDur, Pupil, Sacc., Regions 15×12 3 Sequential
Personality O,C,E,A,N 5 7 Static
Stimulus emo One-hot 6 7 Contextual
Environment Lux, Temp 2 7 Control

Table 3: Feature inventory across modalities.
Modality Variables Dim. Temporal Notes
Eye-tracking FixDur, PupilMean, Saccades, Regions 15 3 Sequential
Personality Big-Five (O,C,E,A,N) 5 7 Static
Stimulus emo One-hot (6) 6 7 Contextual
Environment Lux, Temp 2 7 Control

3.4 Features for Modeling
Because fixations and saccades vary in frequency and timing, we standardized the tempo-
ral dimension via interpolation into 15 equally spaced time steps per trial. This uniform
representation accommodates 24 second videos and facilitates sequential modeling with ar-
chitectures such as Long Short-Term Memory (LSTM) networks [17]. Interpolating to equal-
length sequences allows us to treat each trial as a short emotion episode in the layered-affect
sense, i.e., a window where core-affect fluctuations (pupil, arousal) can be mapped to con-
ceptual labels.

Each time step includes gaze-region allocations, pupil size, and saccadic measures, cap-
turing how attention and arousal evolve over time. By integrating these time-series features
with static context variables (environment and personality), our models capitalize on both
dynamic and trait-level information to boost emotion recognition accuracy.

4 Machine Learning Modeling
4.1 Emotion Labeling and Data Preparation
We aimed to predict four emotion labels: felt valence, perceived valence, felt arousal,
and perceived arousal. Given the imprecision in self-reported data, each label was grouped
into three classes: low/negative (1–3), medium/neutral (4–6), and high/positive (7–9). We di-
vided the dataset into training (64%), validation (16%), and testing (20%) subsets using strat-
ified splits to maintain class distribution. These splits were not strictly subject-independent.
To reduce the risk of personality vectors being memorized across folds, we injected small
random Gaussian noise into personality scores during training for each trial, which acted as
a regularization strategy.

While this binning approach improves model stability, it may mask finer affective distinc-
tions, so future research could explore regression-based or ordinal classification. Following
prior studies [14, 16, 19], binning continuous ratings also mitigates subjective variability in
self-reported emotions. Nonetheless, some granularity is inevitably lost.

4.2 Feature Engineering and Preprocessing
Normalization and Scaling
To ensure fair feature contribution and reduce bias, we applied consistent preprocessing. Per-
sonality trait scores (0–50) were scaled by dividing by 50 [32]. Highly skewed features, like
saccade amplitude/duration, were transformed with MinMaxScaler. Other continuous
features (pupil sizes, environment variables) were standardized using StandardScaler,
subtracting the training-set mean and dividing by its standard deviation to avoid leakage.



SEIKAVANDI, et al.: EYE-TRACKING DYNAMICS AND PERSONALITY 7

Fixation seq Bi-LSTM Bi-LSTM FC

Personality FC

Env input FC

Stim emotion FC

Concat FC FC Output

Figure 2: Architecture integrating eye, personality, environment, and stimulus emotion.

One-Hot Encoding
We encoded stimulus emotion (happy, sad, neutral, angry, disgust, fear) as a 6-dimensional
one-hot vector, allowing the model to distinguish each emotion category independently.

4.3 Neural Network Architecture
Our neural network (NN) integrates multiple input streams (Figure 2). Each stream under-
goes separate preprocessing before feature fusion. This design ensures that temporal features
(e.g., eye-tracking data) and static features (e.g., personality traits, stimulus emotion) receive
tailored treatment for their respective roles in predicting emotional states.
Eye-Tracking Data: Processed through LSTM layers to capture temporal dependencies.
Personality Traits: Processed through fully connected layers.
Stimulus Emotion: One-hot encoded and passed through fully connected layers.
Environmental Variables: Processed through fully connected layers.
To mitigate overfitting on personality or environmental variables, we injected small Gaussian
noise into these inputs during training as a form of data augmentation. This noise helps the
model generalize across participants and conditions.

4.4 Classification Approach
We framed emotion prediction as a three-class classification task, applying softmax activa-
tion for class probabilities. We used categorical cross-entropy loss with inversely propor-
tional class weights to handle imbalance.

4.5 Model Training and Evaluation
We performed manual and grid search hyperparameter tuning for our neural networks. The
search space covered learning rates {10−3,10−4,10−5}, dropout rates {0.2,0.3,0.5}, and
weight decay values. We selected the best configurations based on macro F1 scores on the
validation set. Training employed early stopping, halting if validation did not improve within
10 epochs.

Hyperparameters like learning rate, dropout, and weight decay were chosen per vali-
dation performance. We used the F1-score for evaluation due to dataset imbalance, as it
considers both precision and recall.

We compared our NN models with support vector machines (SVMs) as baselines. The
SVMs used stimulus emotion alone or combined with personality data. We chose SVM
because it is simple, effective for non-temporal data, and reveals the benefit of adding se-
quential modeling in the NN.
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Table 4: Model performance (F1-scores) and hyperparameters (Learning Rate and Dropout)
for different input features.

Low Medium High Macro F1 Learning Rate Dropout
NN with Eye-Tracking Data (No Env)
Perceived Arousal 0.32 0.54 0.17 0.34 0.0002 0.3
Perceived Valence 0.35 0.22 0.28 0.28 0.0002 0.3
Felt Arousal 0.45 0.37 0.07 0.30 0.0003 0.2
Felt Valence 0.29 0.49 0.24 0.34 0.0002 0.3
NN with Eye-Tracking Data
Perceived Arousal 0.18 0.57 0.24 0.33 0.00035 0.3
Perceived Valence 0.58 0.17 0.29 0.34 0.00035 0.3
Felt Arousal 0.45 0.41 0.23 0.36 0.0003 0.2
Felt Valence 0.32 0.46 0.25 0.34 0.0003 0.2
NN with Eye-Tracking + Personality
Perceived Arousal 0.46 0.49 0.40 0.45 0.0003 0.2
Perceived Valence 0.57 0.33 0.29 0.40 0.0002 0.2
Felt Arousal 0.58 0.58 0.40 0.52 0.0002 0.2
Felt Valence 0.38 0.57 0.28 0.41 0.0002 0.2
NN with Eye-Tracking + Stimuli Emotion
Perceived Arousal 0.56 0.33 0.58 0.49 0.0002 0.3
Perceived Valence 0.77 0.56 0.91 0.75 0.0002 0.3
Felt Arousal 0.47 0.45 0.29 0.40 0.0002 0.2
Felt Valence 0.50 0.51 0.54 0.52 0.0003 0.3
NN with Eye-Tracking + Personality + Stimuli
Perceived Arousal 0.63 0.48 0.65 0.59 0.0007 0.3
Perceived Valence 0.77 0.63 0.90 0.77 0.0007 0.3
Felt Arousal 0.61 0.53 0.48 0.54 0.0004 0.3
Felt Valence 0.53 0.62 0.60 0.58 0.0007 0.3
SVM with Stimuli Emotion
Perceived Arousal 0.57 0.26 0.61 0.48 N/A N/A
Perceived Valence 0.76 0.52 0.92 0.73 N/A N/A
Felt Arousal 0.48 0.28 0.32 0.36 N/A N/A
Felt Valence 0.50 0.36 0.59 0.48 N/A N/A

Baseline limitation. Our SVM baseline used aggregated features without temporal gaze
dynamics. A stricter comparison with identical feature sets would further strengthen causal
attribution of performance gains, but was beyond the scope of this paper.

Although this comparison demonstrates the added value of temporal modeling, a full
ablationtraining both NN and SVM on identical feature setswas beyond the scope of this
paper but remains a clear next step for strengthening causal attribution of performance gains.

4.6 Results
Table 4 shows the F1-scores for different models and emotion labels, with the best results
for each label bolded.

Integrating personality traits, temporal eye-tracking data, and stimulus emotion notably
boosted performance, especially for felt emotions. This finding suggests that subjective felt
experiences profit most from incorporating high-level personality data. The SVM baselines
performed well on perceived emotions, possibly reflecting direct stimulus influence, but they
could not model sequential dependencies.

5 Discussion
We combined eye-tracking data, personality traits, and stimulus-emotion labels to enhance
emotion recognition in short speech-containing clips. Although not a fully interactive setup,
emphasizing the listeners perspective under controlled conditions allowed us to isolate key
predictors of perceived and felt emotions.
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5.1 Complexity and Agreement
Emotions emerge from the interplay of stimuli, individual traits, and context, making them
challenging to model. Table 5 shows user agreement ranging from 56.0% (felt arousal) to
77.7% (perceived valence). Personalized calibration could help address subjective variabil-
ity. Moreover, as gaze patterns vary by age and gender, our demographic imbalance may
introduce bias and limit generalizability.

5.2 Model Performance and Stimulus Emotion
The inclusion of stimulus emotion as an input is motivated by its role as a contextual prior:
it represents the actors intended expression (Ee), which observers can perceive (Ep) and
relate to their own felt states (E f ). This is not equivalent to ground truth but serves as a
contextual feature that participants explicitly rated against. We deliberately did not use raw
audiovisual features from the video, as our goal was to focus on observer-centric signals
(gaze, personality) rather than re-training an audiovisual recognition system on acted data
already well-studied in prior work.

Our best model attained a macro F1 of 0.77 for perceived valence (Table 4). Stimulus
emotion greatly aided perceived-emotion prediction; an SVM with only stimulus emotion
was already strong. However, the NN outperformed it on felt emotions by integrating phys-
iological cues from eye tracking. The fact that perceived valence is easier mirrors findings
that observers rely on learned emotion concepts (BET-like), whereas felt states reflect con-
structionist variability [3, 13].

5.3 Multimodality and Individual Differences
Combining stimulus emotion, personality, and eye-tracking gave the highest macro F1 scores
(0.77 for perceived valence, 0.58 for felt valence). Personality clarified individual tenden-
cies, eye tracking offered real-time physiological measures [39], and stimulus emotion con-
textualized perception. This pattern aligns with a layered framework of affect: physiological
arousal signals (e.g., pupil dilation) guide attentional deployment (gaze patterns), which in
turn feed into conceptual emotion labeling in the observers mind [41].

5.4 Comparison and Future Directions
While our NN surpassed the SVM baseline for felt emotionslargely due to sequential infor-
mationwe intentionally kept the LSTM architecture compact to reduce overfitting risk given
the dataset size and short sequence lengths. Future work could evaluate transformer-based
multimodal architectures or cross-modal attention mechanisms, which may better exploit
multimodal dependencies. This decision was intentional: the dataset size and the relatively
short temporal sequences favored compact architectures with fewer parameters, reducing
the risk of overfitting. Future work could evaluate transformer-based multimodal architec-
tures or cross-modal attention mechanisms, which may exploit richer interdependencies. A
thorough ablation would align features for both models. Additional future work includes
improving sample representativeness, investigating true two-way interactions, and refining
interpretability via attention weighting or feature ablation. Real-world applications (e.g.,
telehealth or adaptive tutoring) must also respect data privacy and informed consent. The re-
liance on the acted CREMA-D dataset limits ecological validity, and future research should

Table 5: User agreement (%).
Felt Arousal Felt Valence Perceived Arousal Perceived Valence

Agreement 56.0 65.9 60.6 77.7
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pursue more spontaneous, diverse stimuli.

6 Conclusion
Grounded in a layered affect framework bridging Basic Emotion Theory and constructionist
accounts, this study shows that integrating temporal eye-tracking, personality traits, and
stimulus emotion improves recognition of both perceived and felt emotions in speech-based
clips. By emphasizing the listeners perspective, we found that personality traits enhanced
felt predictions (e.g., felt arousal rose from 0.36 to 0.52), while stimulus emotion strongly
supported perceived performance (perceived valence from 0.34 to 0.77). Separating core-
affect dynamics from conceptual labeling proved valuable for modeling both.

The implications are twofold. First, unifying physiological signals (pupil, gaze), atten-
tional strategies (fixations), and contextual traits (personality, stimulus cues) yields a richer,
more individualized account of emotion, with applications in adaptive agents, teleconferenc-
ing, and mental health. Second, the findings support a layered theoretical view in which
physiological fluctuations, attentional deployment, and conceptual knowledge jointly shape
emotional construction.

Limitations remain: reliance on acted CREMA-D clips constrains ecological validity;
the young, male-skewed sample limits generalizability; and discretizing continuous ratings
into three bins stabilized training but reduced nuance. Addressing these issues will require
larger, more diverse samples, spontaneous dialogue data, and models handling continuous
or ordinal ratings. Expanding beyond eye tracking to prosody or micro-expressions could
further strengthen ecological validity.

In outlook, effective recognition systems must explicitly separateand then reintegratecore-
affect signals, attention strategies, and conceptual constructs. Such systems can move be-
yond static, actor-driven benchmarks toward interactive, real-time, and ethically responsible
applications. We envision layered approaches enabling adaptive, privacy-conscious affective
computing that better captures the complexity and subjectivity of human emotion.

7 Ethical Impact Statement
This research investigates emotion detection in dialogues by integrating eye-tracking data,
temporal dynamics, and personality traits. As the study involves human participants, it was
conducted with oversight from an ethical review board. Informed consent was obtained from
all participants, clarifying data collection, usage, and analysis. All data were anonymized,
and participants were informed of their right to withdraw at any time without consequence.

Potential risks include privacy concerns related to emotion recognition, especially for
metrics like pupil size that participants cannot consciously control. Unlike facial or vocal ex-
pressions, eye metrics such as pupil dilation have minimal cultural awareness, raising the risk
of unintentionally revealing emotional states. We addressed these concerns by anonymizing
data, restricting data access to authorized personnel, and clearly explaining data usage to
participants.

The anonymization of data, explicit communication of its purpose, and careful ethical
handling are key mitigation strategies. Our findings may enable more sensitive, context-
aware affective computing applications that respect user privacy while advancing the field of
emotion recognition in a safe, ethically responsible manner.
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