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Abstract

Energy expenditure estimation aims to infer human metabolic rate from physiological
signals such as heart rate, respiration, or accelerometer, and has been studied primarily
with classical regression methods. The few existing deep learning approaches rarely
disentangle the role of neural architecture from that of signal choice. In this work, we
systematically evaluate both aspects. We compare classical baselines with newer neural
architectures across single signals, signal pairs, and grouped sensor inputs for diverse
physical activities. Our results show that minute ventilation is the most predictive in-
dividual signal, with a transformer model achieving the lowest root mean square error
(RMSE) of 0.87W /kg across all activities. Paired and grouped signals, such as those
from the Hexoskin smart shirt (5 signals), offer good alternatives for faster models like
CNN and ResNet with attention. Per-activity evaluation revealed mixed outcomes: no-
tably better outcomes in low-intensity activities (RMSE down to 0.29 W /kg; NRMSE =
0.04), while higher-intensity tasks showed larger RMSE but more comparable normal-
ized errors. Finally, subject-level analysis highlights strong inter-individual variability,
motivating the need for adaptive modeling strategies. Our code and models will be pub-
licly available at this GitHub repository.

1 Introduction and Related Work

Wearable assistive devices are promising for improving mobility, optimizing body energy
expenditure, and enhancing the quality of life for older adults and individuals with mobility
impairments [8]. Designing such systems is challenging due to the complexity of the human
neuromuscular system. To address this, human- and body-in-the-loop optimization methods
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Figure 1: Multimodal physiological signal processing pipeline for EE. Wearable sensors
placed across the body collect multimodal signals. These signals are processed and fed as
input into multiple neural network architectures. (Image of sensor placement on the body is
adapted from Ingraham et al. K.A.Ingraham).

adapt device parameters in real time based on user feedback, thereby reducing reliance on
complete biomechanical models and avoiding manual tuning in clinical settings [5, 11, 22].

A critical component of such body-in-the-loop optimization systems is the accurate es-
timation of energy expenditure (EE). One precise but intrusive way for measuring EE is
indirect calorimetry, which requires the measurement of oxygen consumption (Vp,) and car-
bon dioxide production (Vcp,) via a metabolic mask; thus limiting long-term use. As an
alternative, portable wearable sensors can provide physiological signals, such as heart rate,
respiration, or accelerometry, which can be combined to estimate energy expenditure. To
achieve this estimation, classical ML methods were used largely in earlier studies, often
with limited sensor modalities and task types. For instance, [4, 14, 16, 17, 21] applied
linear regression, SVMs, or Gaussian Process Regression with a limited number of signals
like accelerometry and heart rate. Some of them reported errors as low as 0.31-0.66 W /kg,
but the number of activities was restricted. Other studies, such as Cvetkovi¢ et al. [3] at-
tempted richer sensor sets, but still optimized only for narrow activity ranges. Ingraham et
al. [8], evaluated the importance of physiological signals for EE estimation and released an
accompanying public dataset. They utilized linear regression models and indicated that us-
ing minute ventilation alone achieved an RMSE of 1.24 W /kg. While their dataset has since
enabled broader evaluation, their analysis was limited to ML approaches. In contrast, our
work leverages the same dataset to benchmark both ML and Deep Learning methods across
a wide range of signals and activities.

Deep learning studies have achieved stronger performance but under narrower condi-
tions. In vision-based approaches for estimate metabolic, neural architectures (CNNs and
Transformers) [9, 15, 19] are a common choice, but they provide only coarse estimates. In
contrast, wearable-sensor research has seen less widespread use of deep learning, though also
here several studies exist with promises of better estimation through such architectures. For
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example, a Deep Multi-Branch Two-Stage Regression Network (DMTRN) was introduced
by Ni et al. [18] that utilized ECG and IMU data, and achieved an RMSE of 0.71 kcal /min.
Other studies, such as those by Lopes ef al. [13], Lee and Lee [12], and Yuan et al. [25]
employed CNNs, LSTMs, or hybrid CNN-LSTM models on signals such as IMU, EMG,
and motion velocity, but activity diversity in their studies was focused on walking-based
tasks, which reduces generalizability. In parallel, Kim and Seong [10] introduced a per-
sonalized EE estimation method that combines a modified MET formulation with a heart
rate—driven Deep Q-Network, achieving improved per-subject accuracy but without demon-
strating cross-subject generalization. Other research has explored specific scenarios, further
limiting broader applicability. For instance, [20] estimated EE during assisted and loaded
walking, reaching RMSE values as low as 0.40 W /kg across novel subjects and conditions,
while [7] evaluated model performance separately for each activity, without assessing gener-
alization across all activities. Additionally, [24] introduced a spatial-temporal fusion network
with hybrid attention mechanisms, using multi-sensor data (SEMG, IMU, and HR). Results
indicated strong performance with an RMSE of 0.342kcal /min in individual scenarios and a
cross-subject RMSE of 0.646kcal /min. However, the study did not address the average per-
formance across all subjects or scenarios, making it difficult to assess overall generalization.
Our study extends this line of work by considering a broader sensor set, diverse activities,
and a wider variety of architectures beyond a single model class.

In summary, most prior work on EE estimation has relied on classical machine learn-
ing techniques, while only a few recent studies have explored deep learning. However, these
deep learning approaches rarely disentangle the role of neural architecture from that of signal
selection, leaving open the question of architectural and signal choices. In this study, we ex-
panded on recent research by comparing various models, including linear regression, CNN,
ResNet, ResNet+Attention, LSTM, and Transformer models, across multiple input config-
urations (single, paired, and grouped signals) to check both overall activity and activity-
specific performance. We studied the ability of the models to generalize and investigated
the impact of transitions between activities. Additionally, we examined inter-individual vari-
ability in signal effectiveness and model performance by studying a per-subject evaluation.
By systematically comparing classical and deep learning methods on the Ingraham ez al. [§]
dataset, we establish a new state of the art on this benchmark, achieving substantially lower
error rates than prior work.

2 Methods

2.1 Dataset

In this study, we use the public dataset provided by Ingraham et al. Please refer to [8] for
more information on data collection and processing. In total, sixteen signals were gathered
with wearable sensors from 10 different subjects, performing six types of physical activities.
The signals are provided in Table 1, with additional details available in the supplementary
material. The ground truth energy expenditure was computed using the Brockway equa-
tion [2] and normalized based on the subject’s body weight.

Grouping Signals: In addition to evaluating models on 1) individual signals, we considered
2) all possible signal pairs as well as 3) physiologically motivated signal groups proposed
by [8]. Group memberships are listed in Table 1, with each signal annotated by its group
label in parentheses (e.g., G for Global signals). Global signals, such as minute ventilation
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and heart rate, reflect whole-body physiological state. Local signals, such as ankle and wrist
acceleration, capture activity in specific body segments. The Local+Global setting combines
both groups, incorporating all 16 signals. Hexoskin signals refer to those measured using the
Hexoskin smart shirt [1], like breath frequency and chest acceleration.

2.2 Neural Architectures

We design and analyze different neural network-based models for estimating human metabolic
rate from wearable sensor signals, aiming to disentangle the impact of neural architecture
from that of signal choice by comparing models with distinct inductive biases. We consider
six representative models: Linear Regression, CNN, LSTM, ResNet, ResNet+Attention, and
Transformer. All deep learning models in this study operate directly on temporal signal in-
puts. An overview of the task and implemented approaches is given in Figure 1.

Linear Regression: This simple and interpretable model serves as an important baseline, as
it is widely used in prior work on EE estimation, and is the key approach used in the bench-
mark we build on [8]. We implemented both single and multiple linear regression variants.
CNN: This model is designed to capture local temporal patterns in the input signals by ap-
plying one-dimensional convolutions through time. The model consists of three 1D convo-
lutional blocks followed by fully connected layers. The convolutional output is flattened and
passed through two fully connected layers. Finally, the output layer has a linear activation
function to match the prediction with the target dimensions. (The training time is 550.985s).
LSTM: We implemented a stacked LSTM-based regression network to leverage both short-
term and long-term memory to monitor changes in the input signals over time. The model
consists of two sequential Long Short-Term Memory (LSTM) layers. The final LSTM out-
put is flattened and passed through a fully connected layer, followed by batch normalization
and dropout. (The training time is 264.065).

ResNet: We build on the popular ResNet architecture [6] and adapt it for 1D time-series
input. The main idea is to utilize residual (skip) connections to allow the network to pass in-
formation from earlier layers directly to later layers. The model architecture begins with a
1D convolutional block. Next, there are three residual blocks with increasing output dimen-
sions. Global average pooling is applied after the last residual block, followed by a linear
layer mapping to the output size. (The training time is 227.01s).

ResNet+Attention: We extend the ResNet architecture with a self-attention block after the
residual layers to capture longer-range dependencies (see Figure 1). This block uses a self-
attention mechanism over the temporal dimension. In this block, there are three separate
1 x 1 convolutions to produce query, key, and value, which represent the input. The attention
score is calculated with the related equation for Artention(Q, K, V) in [23] After re-weighting
the values, a residual connection adds the attention output back to the input and preserves
the original features. (The training time is 590.995s).

Transformer: To model complex temporal dependencies that extend beyond local patterns,
we implemented a multi-head attention model as a Transformer-based architecture inspired
by the original Transformer encoder framework [23]. This model combines 1D convolu-
tional feature projection, positional encoding, and multi-head self-attention. A stack of two
Transformer encoder layers is applied, each consisting of multi-head self-attention (with
eight heads), feedforward network, residual connections, and layer normalization. Finally,
the output is passed through a small feedforward network to match the output dimension of
the EE prediction. (The training time is 4877.415).

Main experiments were conducted using PyTorch 2.5.1 with CUDA 12.4 on a single NVIDIA
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Lin-Reg  Lin-Reg

Signal CNN LSTM  ResNet ResNet+Att  Transformer
[8] (ours)
Waist Acceleration (L,H) - 241 222 2.04 2.30 3.04 1.89
Chest Acceleration (L,H) - 2.35 2.01 2.02 2.09 2.01 1.92
Left Ankle Acceleration (L) - 2.33 1.84 2.02 2.01 1.89 1.85
Right Ankle Acceleration (L) - 2.33 1.83 1.96 1.92 1.87 1.83
Left Wrist Acceleration (L) - 2.70 2.17 2.16 2.19 2.08 2.09
Left Wrist Electrodermal (G) 2.93 3.19 2.60 2.36 2.53 2.83 2.11
Left Wrist Temperature (G) - 3.11 2.55 2.81 2.73 2.54 2.52
Right Wrist Acceleration (L) - 2.73 2.16 222 2.25 2.25 2.07
Right Wrist Electrodermal (G) - 3.01 2.37 2.46 2.59 2.88 2.24
Right Wrist Temperature (G) - 3.13 2.53 2.74 2.85 2.56 2.56
EMG Magnitude Left (L) - 2.86 2.40 2.48 2.58 2.37 2.40
EMG Magnitude Right (L) - 2.83 2.40 2.55 2.50 243 242
Heart Rate (G,H) - 2.29 1.81 2.08 1.97 1.84 1.95
Sp0O, (G) - 2.81 2.34 2.51 2.48 2.33 2.34
Breath Frequency (G,H) - 2.89 2.46 2.67 2.57 2.35 2.43
Minute Ventilation (G,H) 1.24 1.30 1.00 1.03 1.03 0.97 0.87
Global Signals 1.25 1.34 0.97 1.08 1.16 1.17 1.18
Global Signals W/O MinVent - 2.35 1.82 1.77 1.96 1.81 2.17
Local Signals - 1.99 1.98 1.73 1.84 2.69 1.54
Local+Global Signals 1.28 1.27 0.93 1.13 1.34 1.21 1.27
Local+Global W/O MinVent - 1.88 1.60 1.79 1.95 1.88 1.58
Hexoskin Signals 1.24 1.28 0.92 0.98 1.12 1.10 1.07
ng (part of ground truth) 0.93 091 0.62 0.56 0.58 0.74 0.40

Table 1: RMSE (W/kg) of Models using physiological input signals (individual and
grouped). Signal grouping’s initials: (L) local, (G) Global, and (H) Hexoskin. The first
column reports baseline (linear regression) results from [8](where available), while the re-
maining columns present our reproduced linear regression and deep learning models.

GeForce RTX 4090 GPU with 24 GB memory; additional hyperparameters and training con-
figurations are provided in the supplementary material.

3 Experiments and Result

We follow the preprocessing and evaluation protocol of [8] and evaluate the architectures
using leave-one-subject-out cross-validation. In each fold, one subject is used for testing,
while the remaining subjects are used for training, with 15% of the training data held out
for validation. This process is repeated for all 10 subjects. For each test subject, root mean
square error (RMSE) is computed as the average error across all predicted time steps, and
the final RMSE is obtained by averaging the results across all folds. When analyzing perfor-
mance for each activity, RMSE is normalized by the average EE of that activity to obtain the
normalized RMSE (NRMSE).

A manual grid search over hyperparameters is performed using minute ventilation as the
input signal, and the selected values are then fixed for training on all other signals.

3.1 Single and Grouped signals Comparison

We began by examining model performance across single and grouped signals in Table 1.
Minute ventilation emerged as the most reliable predictor of EE, consistently outperforming
other modalities. Among models, the Transformer-based approach achieved the lowest over-
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all error (RMSE of 0.87W /kg for minute ventilation), and was also best for several other
signals, such as waist and chest acceleration. If we prefer an alternative for minute ventila-
tion (challenging to measure, see Sec. 3.3), heart rate is a viable alternative due to its ease of
measurement and the second lowest RMSE (1.81 W /kg) among other signals. Beyond the
transformer, other architectures also showed strengths: the ResNet+Attention model outper-
formed on four signals, whereas the CNN attained the lowest error on five signals and was
particularly effective on grouped inputs. Recognition quality was high for Hexoskin signals
(RMSE of 0.92W /kg), similar to the Transformer’s best result on minute ventilation.

3.2 Pair Combination of Signals

In the next step, we considered pairwise combinations of physiological signals. While indi-
vidual signals alone may carry strong predictive power, combining their sources can reveal
useful synergistic effects. As expected, the combination of minute ventilation and other
signals consistently outperformed all other combinations. Among these combinations, we
selected the best ones and visualized them in Figure 2. The first row showed the result when

Minute Ventilation (MV)  0.87 0.97 1.00 1.03

MV+EMG_M Left 0.94 0.90 1.36 0.91

MV+Chest Acc 0.96 0.96 1.05 1.07

MV+Waist Acc 0.96 0.97 1.00 1.09

RMSE (W/kg)
.

MV+EMG_M Right ~ 0.97 0.93 1.09 1.04

°
®
-

MV+Right Ankle Acc  0.97 0.93 1.01 1.04
MV+Left Ankle Acc 0.99 0.98 0.99 1.04

MV+Breath Frequency 1.04 1.03 1.08 110

o ¢ NN NN e ¢ @ ° © &
FEFTE 80 & &8 SFEE
" L AT &

MV+Heart Rate | 1.04 101 1.00 108 NIENA WA

Transformer ResNet+Att — CNN ResNet

Figure 2: Heatmap of RMSE values using
Minute Ventilation (MV) alone and in com-
bination with secondary signals (rows). The
columns correspond to different prediction
models. Lower RMSE values (lighter col-
ors) indicate better predictive performance.

Figure 3: Model performance across dif-
ferent activities and conditions. The x-
axis shows six activities with variations in
speed or resistance. Model types are dis-
tinguished by color, while input type (single
and grouped) is indicated by marker shape.

minute ventilation is the only input, and the other rows illustrated the results when additional
signals were combined with minute ventilation. Both the Transformer and ResNet+Attention
yielded the best overall results. Notably, adding EMG magnitude (left) further boosted the
performance of both ResNet+Attention and ResNet. Beyond accuracy, both networks bene-
fited from faster training times compared to the Transformer (see Sec. 2.2). When compared
to the results in Table 1, pairing signals enabled ResNet+Attention and ResNet to surpass
the CNN with Hexoskin inputs (RMSE 0.92 W /kg), underscoring the added value of EMG
signals in combination with minute ventilation.
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3.3 Alternatives to Minute Ventilation

While minute ventilation is the strongest predictor in our study, its measurement is techni-
cally demanding, costly, and often uncomfortable, as it typically requires the use of a mask.
This motivated the search for practical alternatives.

In Figure 4, we compared five candidate physiological signals beyond minute ventilation.
The right side of the figure shows their individual performance, while the left side highlights
the best-performing pairwise combinations. Pairing signals resulted in lower RMSE, indicat-
ing that when minute ventilation is removed, using other signals in pairs is more beneficial.

As we mentioned before, CNN with heart rate was the best single signal after minute ven-
tilation, but using it with the (right and left) ankle acceleration (RMSE: 1.49 and 1.51 W /kg)
improved the performance by almost 17%. Another effective pair was left ankle acceleration

@® CONN )y
2.8 2.3 .:,e:::?;:g Pair Signals Single Signal 4
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@ LST™M
26 4 Linear Regression
g ---- Signal Group Separator S +
* °
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z .
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Figure 4: Model performance using alternative input signals for Minute Ventilation. The
left panel shows results from paired signal combinations, while the right panel shows single-
signal inputs. Different models are represented by distinct colors and markers.

and EMG magnitude (right) with the ResNet+Attention, yielding an RMSE of 1.53 W /kg.

When analyzing the most effective pair for each signal (in the absence of minute venti-
lation), heart rate and ankle acceleration (left or right) frequently emerged as the strongest
partners. Across the majority of best pairs cases, CNN delivered the best predictive perfor-
mance, achieving the lowest RMSE relative to other models.

While CNN was effective for certain signal combinations (grouped or pairs), poor signal
selection led to significantly worse results. For example, pairing EMG with electrodermal
activity produced the highest RMSE (8.05 W /kg), underscoring the poor suitability of these
signals for this task. Similarly, electrodermal and temperature signals, whether considered
individually or in pairs, consistently yielded high errors (e.g., 3.15-3.23 W /kg), across di-
verse models, highlighting their limited predictive value.

The complete tables for the best partner(pair) of each signal and for the least effective
pairs, along with the corresponding models, are provided in the supplementary materials.
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3.4 Per-Activity Evaluation

Next, we evaluated model performance per activity, including different speeds and resistance
conditions. The models were trained on all activity types, as in the previous experiments, but
testing was carried out separately for each activity.

We observed two central findings. First, Figure 3 showed that Transformer and CNN
performed best with single inputs. Linear regression with minute ventilation achieved the
lowest single-signal RMSE of 0.29 W /kg in the backward walking at 1 m/s. Grouped sig-
nals with CNN-, LSTM-, and Transformer-based methods consistently improved over single
inputs. The best overall result, also 0.29 W /kg, was obtained by the Transformer with Lo-
cal+Global data during walking at 0.6m/s.

Activity Condition  NRMSE_single Signal NRMSE_group  group Activity Condition  NRMSE _single Signal NRMSE_group group
0.6 m/s 0.14 Min_Vent 0.08 Loc+Glob 1.2mis 0.09 Min_Vent 0.10 Global
Walking 0.9 m/s 0.13 Min_Vent 0.11 Loc+Glob Running ;i mis 0. ‘I‘f . M‘;‘I—V"-\"‘ . 0:; :e’“’ftf"
1.2 mis 0.14 Min_Vent 0.14 Loc+Glob - "‘;‘ g‘ﬂ; ,/;/.[, < CeL 3 . eroskin
7 mis in_Vent . ocal
0.6 m/s (4°) 013 Min_Vent 0.09 Loc+Glob Pry— o o AcC o "
. o . pm est_ . obal
. 9 «_Elec
Incline 1.2 mls (4°) 009 L_Wrist_Elec 0.13 Hexoskin 70 (83) ot Jivs 008 Loscioh
0.6 m/s (9°) 0.10 Min_Vent 0.13 Hexoskin Cycling 20 rpm &) 000 Min. Vent 007 Glonal
1.2 mls (9°) 0.12 Min_Vent 011 Hexoskin 100 tprm R1) o1l Min_Vent 010 Local
0.4 m/s 0.15 Min_Vent 0.14 Loc+Glob 60 Wats 0.12 R_Ankle_ACCL 0.11 Local+Global
Backwards 0.7 m/s 0.13 Min_Vent 0.10 Loc+Glob Stairs Climbing 75 Watts 011 Min_Vent 0.10 Global
LOm/s 0.04 Min_Vent 0.08 Hexoskin 90 Watts o1 Min_Vent o1 Hexoskin

Table 2: NRMSE for different activities and different conditions.

Second, performance varied with activity intensity. RMSEs were lower for low-intensity
activities, while higher-intensity tasks produced larger RMSEs. However, Table 2 showed
that normalization (NRMSE) reduced these differences. Several high-intensity conditions
(e.g., running at 1.8 m/s) also achieved comparable NRMSE. This indicates that while in-
tensity increases error, models scale proportionally.

Table 2 also indicated that, as expected, minute ventilation emerged as the strongest
single input and obtained the overall best NRMSE of 0.04, while among grouped signals,
Local+Global and Hexoskin consistently delivered the best performance across activities.

3.5 Per-Subject Evaluation

Lastly, we evaluated the effectiveness of different physiological signals and models per sub-
ject to examine how results fluctuate with individual differences. Figure 5 compares CNN
and Transformer models for single and grouped signals. While overall trends were consis-
tent across architectures, we highlighted the most informative results here (further plots are
available in the supplementary materials). Each boxplot shows the distribution of RMSE
values across 10 subjects for a given input signal. As expected, minute ventilation consis-
tently yielded the lowest RMSE with minimal inter-subject variability, confirming its role as
the most robust predictor of energy expenditure. In contrast, signals such as SpO, and EMG
magnitude (left and right) showed both higher RMSE and greater variance, reflecting weak
predictive power and strong inter-individual differences in signal quality. Heart rate achieved
a low average RMSE but displayed high variance across subjects.

Interesting insights arose from comparing the variance differences between chest and
ankle accelerations. Chest acceleration, which reflects global body motion, presumably ben-
efited from the Transformer’s ability to capture smooth, long-range dependencies, resulting
in lower variance. In contrast, CNNs, which rely on local temporal filters, may have failed
to capture these patterns. On the other hand, ankle acceleration signals are periodic and
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Figure 5: Performance of Transformer and CNN for single and grouped signals across 10
subjects. The dashed line separates single- from grouped-signals in each plot. Boxplots rep-
resent the distribution of RMSE values across subjects: median (line), 25th—75th percentiles

(box), and whiskers to 1.5xIQR. (MV: Minute Ventilation)

structured patterns that were well-suited to the CNN’s short-window convolutional architec-
ture. Here, the Transformer may have been overly sensitive to small subject-specific gait
variations, leading to higher variance. Finally, we observed that removing minute ventilation
from the Global and Local+Global signal groups led to a noticeable increase in both median

RMSE and variance.

4 Discussion and Conclusion

In this work, we implemented and systematically compared different neural network-based
architectures for energy expenditure prediction from wearable physiological signals across
diverse activities. Our main objectives were to: (1) compare ML and DL models, (2) assess
generalizability across signals and activities, and (3) analyze subject-specific variability.
Model and signal configurations: The Transformer and ResNet+Attention consistently out-
performed other models, while CNNs offered a strong balance between accuracy and com-
putational efficiency. Across all models, minute ventilation was the most reliable predictor,
achieving an RMSE of 0.87 W /kg with the Transformer. Since it is difficult to measure in
practice, we examined alternatives: heart rate was the strongest single signal, and pairing
or grouping signals further improved accuracy. For example, pairing heart rate with ankle
acceleration or EMG signals across limbs reduced RMSE substantially. Signal fusion using
Hexoskin and Local+Global inputs also outperformed single-signal baselines.
Activity effects: Performance varied with activity intensity. Low-intensity tasks (e.g., back-
ward walking at 1 m/s) yielded very low errors, while higher-intensity activities showed
greater RMSE. Normalization reduced these differences, with some intense activities achiev-
ing competitive NRMSE. This scaling of the error with intensity highlights the value of

activity-specific refinements over universal models.
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Individual differences: A central finding of this study is the extent of inter-subject variabil-
ity. While minute ventilation provided stable performance for all participants, other signals
such as heart rate and EMG were highly variable, likely reflecting physiological differences
and variations in sensor quality. Model choice also interacted with signal type: Transformers
captured smoother, whole-body dynamics (e.g., chest acceleration) more consistently across
subjects, whereas CNNs better handled periodic patterns (e.g., ankle movement). These re-
sults highlight that robust EE estimation requires not only choosing the right signals but also
matching model architecture to signal characteristics as well as individual variability.
Further practical recommendations: Taken together, our findings suggest several guide-
lines for real-world applications. When minute ventilation is available and processing time
is less critical, the Transformer is the optimal choice. If faster inference is required and sig-
nals captured by the Hexoskin shirt are accessible, CNNs offer a good balance of efficiency
and accuracy. In cases where both minute ventilation and EMG magnitude are available,
ResNet+Attention provides the best overall accuracy. Finally, when minute ventilation can-
not be measured, pairing heart rate with ankle acceleration and applying a CNN yields a
strong and practical alternative.

Neural network—based approaches for EE prediction, particularly considering diverse
physiological signals, have been understudied. Our results demonstrate both the potential of
these methods and the substantial inter-subject variability that remains. This variability high-
lights the need for future work on activity-specific and personalized models. To encourage
further research, we will release our code and models at this GitHub repository.
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