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Abstract

Forged and generated images, such as deepfakes and Photoshop forgeries, pose sig-
nificant societal threats. Conventional fake image detection models cannot develop trust
among users because they only classify the images without providing explanations. In
this paper, we particularly address this concern and demonstrate that explainable AI
(XAI) methods, including SHAP, LIME, and integrated gradients (IG), can highlight
the specific regions in an image that influence a model’s classification, and can identify
the fidelity of the deepfake images. These attribution maps pinpoint manipulated regions
in facial images and highlight geometric abnormalities. Furthermore, we analyzed the
differences between different types of deepfake image datasets using cross-dataset ex-
periments on Photoshop-generated, Celeb-DF, and FF++ datasets. Our findings show
that models trained on deepfake images demonstrate superior robustness and general-
ization, especially in cross-dataset scenarios, compared to Photoshop-generated images.
This research highlights how the complexity and structure of image manipulations di-
rectly affect a detection model’s performance.

1 Introduction
The rapid advancement of generative AI has led to the generation of realistic, high-quality
deepfake images [1, 2]. Detecting fake images is challenging as generative AI becomes so-
phisticated [3, 4]. However, the mere identification of deepfake images without in-depth
insight does not provide an accurate framework for an extensive assessment of the mod-
els. Understanding why the model flags an image as fake is imperative to make the model
trustworthy [5, 6]. Saliency maps highlight significant portions, revealing information about
the bias and fairness of the models. Several works proposed diverse deep learning models
to identify fake images, but few have analyzed feasible explanations [6, 7, 8]. Although
preliminary approaches relied on hand-crafted features and machine learning models [9],
recent works use advanced deep neural networks [10, 11, 12, 13]. Although these models
perform well on images with noticeable irregularities, such as neighborhood inconsistency,
geometric irregularity, and unnatural positioning of face parts [7, 14], they do not generalize
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well to images generated by more sophisticated generative models. Further, most of these
approaches do not provide a proper explanation and do not build trust among end-users in
such scenarios.

XAI models highlight salient image regions [15], providing valuable information on the
behavior of the model [16]. Some studies have re-evaluated the adequacy of these visual fea-
ture maps for deepfake detection by comparing attribution outputs across models [17]. These
concerns motivate us to develop an integrated feature attribution system to improve deepfake
detection. We analyze various deep learning models, including shallow CNN, AlexNet [18],
VGG19 [19], ResNet50 [20], ResNet101 [20], and EfficientNetV2 [21] to detect deepfakes
of varying quality. We identify the attribution maps using SHAP [22], LIME [23], and
IG [24], reevaluate model performance, and investigate the generalizability of the models
by focusing on highlighted regions. The experimental results indicate that the attribution
maps improve the models’ detection accuracy. However, our primary goal is not to bench-
mark the latest architectures, but to systematically study how attribution methods influence
models of varying depth and complexity, thereby isolating their role in improving trust and
interpretability.

The key contributions of this work are as follows:

• We introduce a novel workflow that integrates XAI techniques into a deep learning
pipeline to significantly enhance the accuracy and interpretability of forgery detection.
Our workflow identifies visual saliency maps that reflect fiducial portions, geometric
abnormalities, and manipulated facial regions, thereby providing a human-discernible
understanding and building user trust.

• We utilize the attribution maps to evaluate the fidelity of the deepfake image datasets
quantitatively. We guide the models in distinguishing different types of forged datasets
using these attribution maps generated by the aforementioned XAI methods. This
approach is validated through a comprehensive series of experiments conducted on
deepfake datasets (FF++ and Celeb-DF) and Photoshop-generated (PG) datasets.

• We conducted extensive experiments demonstrating that models trained on deepfake
datasets generalize better to PG forgeries than the reverse. We performed cross-dataset
experiments to analyze these two types of fake images with distinct structural and
feature-level differences, thereby addressing a critical gap in prior work.

This paper presents a systematic way to understand different deepfake types using XAI mod-
els, paving the way for developing advanced and reliable solutions. Our paper attempts to
create a novel framework for combating the threat of deepfakes and making the digital envi-
ronments more trustworthy.

2 Related Works
Several recent studies have proposed various ML and DL approaches for deepfake detec-
tion [25, 26, 27]. Safwat et al. [28] introduced a hybrid DL model that combines ResNet50
and GAN with channel-wise attention mechanisms to improve the detection accuracy of fake
faces. Similarly, Ishrak et al. [29] combined CapsuleNet with Long-Short Term Memory
(LSTM) to analyze deepfake video frames. Rafique et al. [8] proposed a hybrid approach
that combined DL and traditional ML techniques for deepfake image detection and obtained
89.5% accuracy. Khalid et al. [30] proposed a graph neural network (GNN) framework
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that incorporates interpretability for deepfake detection. Similarly, attention-based models
leveraging weight mechanisms and the LayerCAM technique were introduced in [31, 32].
Silva et al. [33] explored ensemble models combining standard CNNs with attention-based
networks using Grad-CAM visualizations. Transformer-based solutions on Celeb-DF and
FF++ datasets were presented in [34, 35]. Additionally, Ilyas et al. [36] introduced a pro-
totype learning approach using ConvNext-PNet, which achieved notable generalization with
98.70% accuracy on FF++ and 97.09% on Celeb-DF. Similarly, Ahmad et al. [37] demon-
strated the importance of privacy and security while mitigating fake content, a concern also
highlighted by Huang et al. [38], listed specific challenges in explicit and implicit iden-
tity detection, such as face swapping, shifting, and face2face. Lin et al. [39] proposed
domain-agnostic features to ensure the model’s satisfactory performance in different do-
mains. Malolan et al. [40] have attempted to bridge this gap by incorporating XAI techniques
to highlight manipulated regions within images and offering visual cues about the model’s
decision-making process. Despite this progress, researchers lack a proper understanding of
how attribution-based explanations affect model behavior for different types of forgeries. A
notable gap remains in explaining the patterns observed across different deepfake detectors.
However, identifying both deepfakes and PG images remains a significant challenge. To our
knowledge, no study has explicitly addressed this nuanced distinction. In contrast, our focus
is on the impact of feature attribution during classification.

Figure 1: An end-to-end three-stage pipeline
of the proposed approach, considering: base-
line CNNs on raw images (green), attribution
maps (red), and feature maps from the final
convolutional layer (magenta).

Figure 2: Feature attribution maps of PG,
Celeb-DF, FF++, and real images. Each
row shows the original image, IG, LIME,
SHAP, and Grad-CAM visualization.

3 Methodology

3.1 Feature Attribution Methods
We incorporate feature attribution techniques into our workflow (shown in Figure 1) to en-
hance the model’s interpretability by highlighting its most relevant regions. The XAI meth-
ods identify which parts of that image most influence the classifier’s decision, enabling us
to focus on semantically meaningful areas rather than the entire image. This allows us to
comprehend whether the model looks at spurious features and correctly identifies the manip-
ulated region. This section outlines the attribution tools employed and details the procedure
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for generating and interpreting these maps within our pipeline.

3.1.1 SHapley Additive exPlanations (SHAP)

We quantify the influence of individual pixels on model decisions using the SHAP explainer.
SHAP is a widely used XAI method based on information theory that considers image fea-
tures S = {1, . . . ,d} as the “players” of a cooperative game, assigning each feature j ∈ S
a Shapley value φ , that indicates its marginal contribution to the model output [22]. For
a given input image X ∈ RH×W×3, SHAP yields φ ∈ Rd (where d = H ·W · 3). The final
saliency map for the three channels is represented by Φ ∈ RH×W and the positive entries
mark forged regions (such as mouth corners, eye rims, and blending seams). We define a
binary mask to retain the positively attributed pixels as, Mu,v = 1

[
where Φu,v > 0

]
, where

u = 1, . . . ,H, v = 1, . . . ,W . Then apply this mask channel-wise to the original image accord-
ing to the formula X+ = X⊙Mu,v. The visual inspection of the resulting masked attribution
map X+ in Figure 2 (Fourth column) confirms that the model focuses on plausible forgery
cues. Fine-tuning with these masked attribution maps steers learning toward genuine ma-
nipulation artefacts. However, the extra computation is negligible compared to a standard
forward pass and enables spontaneous attribution during training and evaluation.

3.1.2 Local Interpretable Model-agnostic Explanation (LIME)

We capture important local visual features using the LIME explainer. LIME is a popular fea-
ture attribution method [23] that explains a model’s predictions by fitting a local, sparse sur-
rogate around the input. For an image X, we first obtain N super-pixels {S j}N

j=1 using Simple
Linear Iterative Clustering (SLIC) [41]. Each perturbation is a binary vector z ∈ {0,1}N that
masks super-pixels, sampling n such vectors yields a neighbourhood Z = {z(i)}n

i=1. The
surrogate model is a sparse, linear model g(z) = β0 +∑

N
j=1 β jz j, that is fitted by weighted

least squares with a kernel πX favouring perturbations close to X. The learned weights
β = {β j}N

j=1 represent an attribution map Ψu,v = βs(u,v), where s(u,v) represents the super-
pixel index containing (u,v). Similar to our approach with SHAP, we define a binary mask
Mu,v = 1

[
where Ψu,v > 0

]
to obtain the masked attribution map X+. The third column of

Figure 2 shows that LIME highlights fine-grained regions rather than broad facial structures.
Per prediction, its computational cost is higher because every sample Z requires a forward
pass and the surrogate fit, which makes LIME slower than SHAP for deep networks.

3.1.3 Integrated Gradient (IG)

Integrated gradient [24] is a widely used XAI method that computes feature importance by
performing a line integration of the model’s gradient along a straight path from a baseline
X0 to the input X. Let Xα = X0 +α (X−X0), where α ∈ [0,1]. The attribution for pixel
(u,v,c) approximates the integral with 50 Riemann steps as,

IGu,v,c =
(
Xu,v,c −X0,u,v,c

) ∫ 1

0

∂ f (Xα)

∂Xu,v,c
dα. (1)

IG yields time complexity O(K), much lower than deep SHAP and LIME. The IG method
produces a heat map Γ∈RH×W summing all channels, highlighting distinct and prominent
facial regions such as eyes and nose, as depicted in the second column of Figure 2. These
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attribution maps improve transparency and can steer fine-tuning toward authentic manipula-
tion artefacts. Similarly, Grad-CAM reveals that the shallow CNN focuses on manipulated
areas.

3.1.4 Feature Map From Last Convolution Layer

The model processes the input image through multiple convolutional layers and progres-
sively extracts different-level features. The feature maps from the final convolutional layer
of each CNN model are passed through a Global Average Pooling (GAP) layer [42] to obtain
compact feature vectors. These feature vectors are then used as input to various ML models
(see Figure 1).

3.2 Experimental Setup

We considered three popular, distinct datasets: a PG image dataset [43], Celeb-DF [44], and
FaceForensics++ (FF++) [45]. The PG dataset contains 2,041 face images, comprising 1,081
real and 960 fake images. The fake images in this dataset are categorized into easy, medium,
and hard classes based on their ease of detection. The easy, medium, and hard classes contain
noticeable geometric aberrations, subtle distortion, and minimal visual anomalies. Celeb-
DF [44] consists of high-quality deepfake videos of celebrities, generated with advanced
synthesis techniques that produce artefacts such as lip-sync mismatch and flickering. FF++
is a challenging benchmark dataset [45] containing 1,000 videos for manipulation methods,
including DeepFakes, Face2Face, FaceSwap, and NeuralTextures. This study focuses on the
DeepFakes subset of the FF++ dataset to evaluate model performance. These datasets offer
a diverse and challenging benchmark for training and testing forgery detection models.

To evaluate the impact of attribution maps, we trained models with two types of inputs:
(i) original images and (ii) attribution-based masked images. We performed both within-
dataset and cross-dataset evaluations to assess the generalizability. For instance, we trained
models on the PG dataset and tested them on Celeb-DF and FF++, and vice versa. We
initially resized and normalized the images for preprocessing and then split the PG dataset
into training and testing sets using a 70:30 ratio. From the Celeb-DF and FF++ datasets, we
extracted 10 random frames per video, ensuring variations in expression, pose, and lighting.
Subsequently, we split these video-based datasets into a train-test subset, according to the
official protocols [44, 45].

We explored six convolution-based models: a custom CNN model with three 3×3 convo-
lutional layers (32 / 64 / 128 filters); AlexNet as a shallow baseline; VGG-19 for deeper hi-
erarchical features; ResNet-50 and ResNet-101 with residual connections; and EfficientNet-
V2, a relatively lightweight model. We first trained the models on raw images for binary
classification (real vs. fake) using 20 epochs, a batch size 32, and a learning rate of 0.01. Af-
ter convergence, feature attributions are generated using SHAP, LIME, and IG. We then used
these attribution maps to fine-tune the models and re-evaluate performance, systematically
analyzing the efficacy of attribution-guided learning across multiple datasets and settings.
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Training on PG dataset
Celeb-DF FF++ PG

Modality Accuracy ROC-
AUC

Accuracy ROC-
AUC

Accuracy ROC-
AUC

Baseline
CNN 50.58 0.69 50.09 0.5 71.97 0.72
Alexnet 52.58 0.51 50.98 0.5 70.26 0.71
VGG19 54.31 0.52 51.91 0.51 75.59 0.75
ResNet50 54.58 0.53 52.08 0.51 76.30 0.75
ResNet101 55.07 0.54 52.71 0.52 76.78 0.75
EfficientNetV2 55.91 0.55 53.07 0.53 78.78 0.77

Attribution Map From SHAP
CNN 56.78 0.54 51.58 0.51 86.19 0.85
Alexnet 58.73 0.57 52.11 0.52 85.31 0.84
VGG19 59.66 0.56 53.46 0.53 85.93 0.84
ResNet50 61.03 0.59 56.49 0.55 88.00 0.87
ResNet101 61.74 0.58 57.41 0.56 89.07 0.87
EfficientNetV2 62.77 0.62 60.15 0.6 90.78 0.86

Attribution Map From LIME
CNN 56.35 0.54 54.01 0.53 84.33 0.81
Alexnet 58.60 0.56 54.12 0.54 84.03 0.82
VGG19 59.64 0.58 56.40 0.56 85.44 0.84
ResNet50 60.87 0.59 58.93 0.58 86.95 0.83
ResNet101 61.83 0.60 59.68 0.59 85.59 0.84
EfficientNetV2 62.11 0.61 62.95 0.61 86.00 0.85

Attribution Map from Integrated Gradient
CNN 60.18 0.57 56.28 0.56 96.00 0.91
Alexnet 61.73 0.59 60.91 0.6 88.32 0.87
VGG19 62.60 0.61 61.66 0.61 89.65 0.88
ResNet50 63.43 0.62 62.19 0.61 91.47 0.82
ResNet101 63.84 0.63 63.11 0.63 91.47 0.84
EfficientNetV2 64.87 0.64 64.05 0.64 91.81 0.89

Feature Map From Last Conv Layer
CNN 61.02 0.6 60.21 0.6 82.03 0.80
Alexnet 61.06 0.6 60.39 0.6 78.86 0.77
VGG19 61.50 0.61 60.55 0.59 80.51 0.77
ResNet50 62.02 0.6 61.16 0.59 82.03 0.79
ResNet101 62.74 0.61 61.52 0.60 82.49 0.82
EfficientNetV2 63.02 0.60 62.20 0.61 83.03 0.82

Table 1: Comparative performance assess-
ment of the models across different modali-
ties. Models are trained on the PG dataset.

Training on Celeb-DF dataset
Celeb-DF FF++ PG

Modality Accuracy ROC-
AUC

Accuracy ROC-
AUC

Accuracy ROC-
AUC

Baseline
CNN 87.69 0.91 57.45 0.54 71.09 0.70
Alexnet 92.8 0.95 58.82 0.55 72 0.71
VGG19 93.1 0.93 59.14 0.57 72.28 0.71
ResNet50 88.34 0.87 60.34 0.6 73.91 0.72
ResNet101 94.02 0.94 62.46 0.62 74.37 0.73
EfficientNetV2 97.63 0.96 64.83 0.64 77.48 0.76

Attribution Map From SHAP
CNN 88.13 0.88 61.62 0.61 71.61 0.70
Alexnet 91.29 0.90 61.69 0.6 72.23 0.71
VGG19 92.81 0.91 62.71 0.61 72.91 0.72
ResNet50 93.79 0.91 63.39 0.63 73.73 0.72
ResNet101 94.51 0.92 64.31 0.63 75.52 0.73
EfficientNetV2 94.63 0.93 66.23 0.65 76.65 0.75

Attribution Map From LIME
CNN 87.82 0.85 60.27 0.59 65.46 0.63
Alexnet 91.06 0.89 60.65 0.6 66.81 0.63
VGG19 91.71 0.91 61.22 0.61 66.80 0.64
ResNet50 89.57 0.87 62.79 0.62 68.15 0.66
ResNet101 89.09 0.85 62.01 0.62 67.33 0.66
EfficientNetV2 97.99 0.94 64.14 0.64 71.56 0.69

Attribution Map from Integrated Gradient
CNN 89.91 0.90 63.01 0.61 75.29 0.71
Alexnet 93.75 0.89 63.12 0.62 76.15 0.72
VGG19 94.17 0.92 63.54 0.63 76.42 0.72
ResNet50 92.57 0.89 64.86 0.64 77.2 0.74
ResNet101 95.07 0.95 65.22 0.65 78.28 0.74
EfficientNetV2 98.06 0.98 69.38 0.69 78.83 0.77

Feature Map From Last Conv Layer
CNN 86.02 0.84 61.34 0.61 64.02 0.64
Alexnet 91.75 0.90 61.55 0.61 69.75 0.68
VGG19 93.05 0.91 61.71 0.61 70.51 0.69
ResNet50 87.83 0.85 62.78 0.62 71.81 0.71
ResNet101 93.82 0.90 63.93 0.63 72.87 0.70
EfficientNetV2 97.34 0.95 64.56 0.64 75.51 0.75

Table 2: Comparative performance assess-
ment of models across different modalities.
Models are trained on the Celeb-DF dataset.

4 Experimental Results and Discussions

4.1 Baseline Performance

We trained the six aforementioned CNN models on the original datasets to establish a bench-
mark for within and cross-dataset settings. The comparative results tabulated in Tables 1-3
confirm that all models obtain high accuracy and ROC-AUC. These Tables suggest that the
EfficientNetV2 achieves comparatively higher accuracy and ROC-AUC across all settings.
A detailed analysis reveals that the accuracy and ROC-AUC of the models increase steadily
with an increase in the model depth. Table 1 reflects that the models struggle to accurately
classify images from the PG dataset, as it contains subtle artefacts. The best performing
model, EfficientNetV2, achieved 78.78% accuracy and 0.77 ROC-AUC. However, the per-
formance of the EfficientNetV2 displayed noticeable degradation in the cross-dataset set-
ting, as expected. Table 2 suggests that EfficientNetv2 achieved excellent performance on
the Celeb-DF dataset, with an accuracy of 97.63 and an ROC-AUC of 0.96. Models trained
on the Celeb-DF dataset obtained better recognition performance in cross-dataset evaluation
than those trained on the PG dataset. The diverse features in these two datasets influence
recognition performance and impede generalization in cross-dataset experiments. Efficient-
NetV2 achieved the highest performance on FF++ with 99.58% accuracy and 0.97 ROC-
AUC, though cross-dataset scores dropped significantly for most models. The loss plots
in Fig. 3 demonstrate that shallow CNN models converge slowly, especially for the FF+
dataset. In contrast, models with complex network architectures, such as ResNet101 and
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EfficientNetV2, achieve lower loss and higher accuracy in fewer epochs. Models trained on
other deepfake datasets attain relatively high accuracy on the PG dataset. Other cross-dataset
experiments produce comparatively lower accuracy, indicating that the PG dataset contains
realistically blended manipulations or duplicated facial regions. These plots underline that
more profound and complex models inadvertently learns useful features.

Training on FF++
Celeb-DF FF++ PG

Modality Accuracy ROC-AUC Accuracy ROC-AUC Accuracy ROC-AUC
Original Images

CNN 58.46 0.52 90.03 0.81 71.38 0.70
Alexnet 60.65 0.59 89.22 0.81 71.92 0.71
VGG19 62.74 0.61 94.90 0.84 74.14 0.74
ResNet50 68.34 0.61 92.22 0.84 74.19 0.74
ResNet101 68.76 0.64 96.33 0.85 75.07 0.75
EfficientNetV2 69.98 0.69 99.58 0.97 76.67 0.77

Attribution Map From SHAP
CNN 64.32 0.62 89.87 0.89 73.88 0.71
Alexnet 65.69 0.63 89.98 0.90 75.38 0.74
VGG19 65.71 0.63 91.95 0.91 78.68 0.77
ResNet50 70.31 0.65 94.56 0.94 81.99 0.81
ResNet101 71.32 0.7 95.52 0.93 82.13 0.82
EfficientNetV2 72.83 0.71 97.09 0.95 84.58 0.84

Attribution Map From LIME
CNN 61.27 0.60 91.61 0.90 72.79 0.71
Alexnet 62.65 0.62 92.12 0.90 73.01 0.73
VGG19 63.22 0.63 98.40 0.94 75.77 0.74
ResNet50 67.79 0.65 97.93 0.94 79.99 0.79
ResNet101 67.01 0.65 95.68 0.92 78.34 0.77
EfficientNetV2 70.14 0.69 99.95 0.96 81.33 0.81

Attribution Map from Integrated Gradient
CNN 67.15 0.66 94.86 0.95 75.35 0.75
Alexnet 70.62 0.69 89.22 0.95 79.19 0.79
VGG19 71.84 0.7 94.90 0.95 81.71 0.81
ResNet50 72.48 0.7 92.22 0.96 82.62 0.82
ResNet101 73.12 0.71 93.67 0.97 83.35 0.82
EfficientNetV2 73.88 0.71 99.58 0.98 86.15 0.83

Feature Map From Last Conv Layer
CNN 64.34 0.6 89.02 0.87 73.02 0.72
Alexnet 65.55 0.63 91.73 0.90 75.73 0.74
VGG19 66.71 0.64 96.82 0.94 77.82 0.75
ResNet50 68.78 0.67 97.30 0.95 77.30 0.76
ResNet101 68.93 0.67 94.81 0.92 78.81 0.77
EfficientNetV2 71.56 0.70 98.42 0.97 80.42 0.80

Table 3: Comparative performance assessment of the models across different modalities.
The models are trained on the FF++ dataset.

4.2 Model Performance with Insights from Feature Attribution
We masked the salient regions and fed these images to the aforementioned deep learning
models to analyze the effectiveness of the saliency maps obtained from the XAI methods.
According to the results shown in Table 1-3, using saliency maps improved the detection
performance in most cases. SHAP-based saliency maps result in relatively higher detection
accuracy for most datasets. Specifically, SHAP-based saliency maps led to relatively higher
detection accuracy for most datasets. On average, SHAP and LIME improved accuracy
by 5-6% and 3-4%, respectively. For the PG dataset, the accuracy and ROC-AUC score
of EfficientNetV2 increased from 78.78% to 90.78% and from 0.77 to 0.86, respectively.
However, cross-dataset evaluation generally reduced the classification accuracy for models
trained on attribution maps. Models trained on the Celeb-DF dataset that utilized SHAP
feature maps produced the best performance in a cross-dataset setting. For evaluations within
the dataset, training in Celeb-DF and FF++ using SHAP maps yielded a precision of 94.63%
and 97.09% with ROC-AUC scores of 0.93 and 0.95, respectively.

The results indicate that LIME’s reliance on local features limits its effectiveness, while
the global features obtained by SHAP help attain better recognition. Consequently, LIME-
based training was less effective than training with SHAP maps. The models trained on
the PG dataset showed weak generalization compared to deepfake-trained models, which
adapted more easily to PG images. IG generally improved accuracy by more than 10%



8 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

(a) Celeb-DF loss (b) FF++ loss (c) PG loss

(d) Celeb-DF acc. (e) FF++ acc. (f) PG acc.

Figure 3: Training loss and accuracy curves of CNN models under baseline conditions across
Celeb-DF, FF++, and PG datasets.

compared to the baseline. IG combines global and local features, identifying regions with
aberrations and unnaturally shaped areas. While the custom CNN model achieved better
performance on the PG dataset with 96% accuracy and a 0.91 ROC-AUC score, it performed
poorly in cross-dataset evaluations. In contrast, models trained with the IG method achieved
more than 70% accuracy on unseen datasets. The IG-based saliency map outperformed other
methods because it considers the entire input path and captures more comprehensive feature
interactions.

The real-world viability of attribution-enhanced systems hinges not only on their detec-
tion capabilities but also on their computational demands. Since attribution methods operate
as post-hoc explanations, they do not alter the backbone network size but require additional
forward and backward passes to generate saliency maps. Table 4 reports the resulting over-
head in terms of floating-point operations per second (FLOPs) and inference time, measured
on a 20GB NVIDIA ADA Generation 4000 GPU. For reference, baseline EfficientNetV2
inference is ∼12 ms per image. The results shown in Table 4 highlight a trade-off between

XAI Method Extra FLOPs (× baseline) Time / Image
SHAP 6-8× 80 ms (vs. 12 ms)
LIME 8-10× 100 ms (vs. 12 ms)
IG ∼5× 60 ms (vs. 12 ms)

Table 4: Computational overhead of attribution methods relative to baseline inference.

interpretability and efficiency. SHAP and LIME provide helpful but slower explanations. In
contrast, IG offers more detailed attributions with substantially lower latency, making it the
most practical choice for real-time and large-scale deployment.

We also evaluated feature-based transfer learning using representations from the last
convolutional layer of the CNNs. The output of the average-pooling layers was fed into
26 machine learning classifiers. The performance gains of these approaches were smaller
than those of the deep models but remained above the baseline. ExtraTreesClassifier [46]
achieved 83.03% accuracy and a 0.82 ROC-AUC score on the PG dataset. At the same
time, Gaussian Naive Bayes (GaussianNB) and Nu-Support Vector Classification (NuSVC)
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obtained the best performance on Celeb-DF and FF++, with 63.02% and 62.02% accuracy,
respectively. Cross-dataset generalization remained limited, although features from Celeb-
DF showed better transferability than others. ExtraTreesClassifier achieved 97.34% accuracy
and a 0.95 ROC-AUC on Celeb-DF, while Light Gradient Boosting Machine (LightGBM)
achieved 64.56% on FF++ and 75.51% on PG. Training the models on FF++ features yielded
the strongest results. Under this setting, ExtraTreesClassifier achieved 98.42% accuracy and
a 0.97 ROC-AUC, and it maintained 71.56% accuracy on Celeb-DF and 80.42% on PG.

Saliency maps consistently improved detection, with IG providing the most significant
gains. While SHAP offers strong global interpretability, LIME adds localized insights. How-
ever, PG manipulations remain the most difficult to detect and generalize compared to deep-
fake forgeries.

Model FF++ Celeb-DF

DFGNN [30] 98.97 93.90
MRT-Net [31] 96.70 –
AW-MSA [32] 98.05 96.12
Ensemble [33] – 93.64
ViXNet [34] 89.10 94.40
CviT [35] 93.00 –
ConvNext-PNet [36] 98.70 97.09
M2TR [47] 99.50 99.76
FakeFormer (AUC) [48] 97.76 95.21
GenConViT [49] 99.60 90.94
Ours (EfficientNetV2 + IG) 99.58 98.06

Table 5: Comparison of accuracy/AUC (%)
for SOTA deepfake detection models on
FF++ and Celeb-DF datasets.

Method FF++ Celeb-DF PG

Trained on FF++

DFGNN [30] – 73.40 –
ResNet-Swish-Dense54 [50] – 70.04 –
ViXNet [34] – 69.30 –
ConvNext-PNet [36] – 68.45 –
M2TR [47] – 68.2 –
Ours (EfficientNetV2 + IG) – 73.88 86.15

Trained on Celeb-DF

DFGNN [30] 69.60 – –
ViXNet [34] 68.00 – –
ConvNext-PNet [36] 41.28 – –
Ours (EfficientNetV2 + IG) 69.38 – 78.83

Trained on PG

Ours (EfficientNetV2 + IG) 63.02 62.02 –

Table 6: Cross-dataset accuracy (%) of
SOTA fake face detection methods when
trained on one dataset and tested on others.

4.3 Comparative Analysis with SOTA Deepfake Detectors
We benchmark our work against several SOTA methods [30, 31, 32, 33, 34, 35, 36, 47, 48,
49]. Most models consistently attained an accuracy of over 90% in within-dataset settings
for all saliency maps. The EfficientNetv2 model with IG feature maps attained the best accu-
racy, 99.58% and 98.06% on FF++ and Celeb-DF datasets, respectively. Table 5 highlights
that recent models [47, 49] achieve better performance in within-dataset settings. GenCon-
ViT [49] achieves the highest accuracy on the FF++ dataset, while M2TR [47] performs best
on Celeb-DF. Although our approach does not surpass these methods in terms of accuracy,
it addresses the critical gap. Our work analyzes cross-domain generalization and explores
saliency maps to highlight the differences in the inherent quality of the images in the deep-
fake datasets. The work is significant because this area has received little attention despite its
societal relevance. In-depth understanding of the attribution maps and generalization aspects
will play a key role in developing explainable, trustworthy deepfake detection approaches.

We also evaluate our attribution-based methods on PG images for comparison. A hybrid
model [28] was designed to detect fake faces on the PG dataset by leveraging the generative
strength of GANs and the discriminative capabilities of ResNet, achieving an accuracy of
82.98%. As shown in Figure 4, the baseline classifiers in our standard training setup initially
perform compared to this hybrid model presented by Safwat et al. [28]. However, when using
attribution maps as input, the performance of these classifiers significantly improves and
surpasses the hybrid model’s accuracy. Notably, the IG-based attribution maps demonstrate
superior generalization ability, leading to the highest improvement in detection accuracy
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Figure 4: Performance comparison of different CNN models using different saliency map-
ping methods on the PG dataset. A red dashed line marks the benchmark accuracy
(82.98%) [28].

across datasets.
Moreover, to assess the generalizability of our proposed approach, a cross-dataset eval-

uation is conducted, comparing it with existing methods, where models are trained on one
dataset and tested on another. As the models listed in Table 6 are not evaluated on PG im-
ages, their results are not directly comparable. However, since these models are trained on
the Celeb-DF dataset and tested on FF++, and vice versa, we include those settings for a
fair comparison. As shown in Table 6, our proposed approach consistently achieves higher
accuracy in both cross-dataset scenarios than the existing deepfake detection models.

Conclusion
In conclusion, this study underlines the importance of visual feature attribution in enhanc-
ing fake face detection. Incorporating attribution maps for training improves model inter-
pretability and enables the models to learn informative and discriminative visual cues. Our
cross-dataset evaluation further underscores the importance of generalization, suggesting
that models trained with deepfake images, predominantly when guided by attribution maps,
exhibit superior performance across diverse data distributions. The analysis highlights the
practical advantage of using feature attribution as an explanation tool as an integral workflow
component. The improvements in robustness and explainability pave the way for real-world
deployment of the approach, particularly in high-stakes scenarios. Future work could expand
this framework to detect deepfakes in multi-modal data, jointly utilizing visual and audio
attribution. Our work emphasizes the necessity of explainable AI in building transparent,
reliable, and high-performing deepfake detection systems.
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