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Abstract

Deepfakes threaten the reliability of speech technologies, yet most anti-spoofing ap-
proaches are designed for high-resource languages, leaving low-resource and multilin-
gual scenarios underexplored. This challenge is particularly acute in South Asia, where
code-switching and diverse acoustic conditions complicate the detection process. To
address this, we introduce a spoofed speech dataset comprising bona fide and manipu-
lated utterances in Urdu and Hindi, with natural code-switching into English, enabling
benchmarking in multilingual and low-resource settings. We further propose MFCC-
EffNet, a lightweight spoofing detection framework that fuses MFCC and spectrogram
features through a modified EfficientNetV2 with cross-attention. Evaluations across mul-
tiple datasets show strong generalization, with only 250k parameters and low inference
latency, making it well-suited for real-time and edge deployment. Our contributions lay
the groundwork for advancing robust and efficient anti-spoofing in multilingual contexts.

1 Introduction
Automatic speaker verification (ASV) systems have become integral to biometric security,
enabling seamless authentication in mobile devices, smart assistants, banking platforms, and
forensic investigations [8, 17]. By leveraging unique vocal traits, these systems provide both
convenience and protection. However, their reliability is increasingly threatened by presen-
tation attacks (spoofing), in which adversaries employ manipulated or artificially generated
speech to deceive the system [33]. Spoofing methods include replay attacks (playing back
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genuine recordings), voice conversion (mimicking a target speaker’s characteristics), and
text-to-speech (TTS) or deepfake audio synthesis using advanced generative AI models [17].
These threats pose serious risks ranging from financial fraud to misinformation campaigns,
highlighting the urgent need for robust anti-spoofing countermeasures.

Recent advancements in speech synthesis have further escalated this challenge. Modern
TTS systems use neural vocoders to generate highly natural speech from text, while voice
conversion (VC) techniques transfer prosodic and spectral features across speakers [20].
Such advances have enabled the creation of deepfake audio that is often indistinguishable
from genuine speech, making detection increasingly difficult for both humans and automated
systems. The ASVspoof Challenge series [32, 34, 38] has been instrumental in driving
progress by releasing standardized datasets and evaluation protocols. However, these corpora
remain primarily focused on English and a few high-resource languages, leaving significant
gaps in multilingual and low-resource contexts.

Over half a billion people in South Asia speak Urdu and Hindi, where natural code-
switching with English is a prominent feature of everyday communication. However, ex-
isting spoofed speech datasets fail to capture these multilingual conversational dynamics,
leaving the robustness of anti-spoofing systems for this population largely unexplored. To
bridge this gap, we present a spoofed speech dataset and a detection framework in this work.
The primary contributions are

• A spoofed speech dataset in Urdu and Hindi is presented that incorporates natural
code-switching with English. The dataset features conversational styles from bilingual
Urdu and Hindi speakers, laying the groundwork for developing generalizable anti-
spoofing solutions in low-resource, code-switching contexts.

• We propose a spoofed speech detection framework, MFCC-EffNet, which fuses MFCC
[39] and spectrogram features (extracted through a truncated EfficientNetV2 [30] back-
bone) via cross-attention, enabling dual-branch modeling of phonetic cues and spectral
artifacts.

• MFCC-EffNet employs a lightweight Fused-MBConv backbone (250k parameters)
and language-agnostic training with adversarial augmentation, achieving < 1% EER
across the proposed dataset.

The rest of the paper is structured as follows: Section 2 presents the related literature,
Section 3 describes the proposed methodology, Section 4 discusses the experimental setup
and results, and Section 5 concludes the paper.

2 Literature Review
Audio spoofing detection has evolved through the ASVspoof challenges [1], with a focus
on feature representation, computational efficiency, and cross-lingual robustness. Starting
with ASVspoof 2015 [37], subsequent editions such as ASVspoof 2019 [32], ASVspoof
2021 [38], and ASVspoof-5 [34] have provided large-scale benchmark datasets and evalu-
ation protocols. These corpora include both Logical Access (LA) tasks, targeting synthetic
and converted speech, and Physical Access (PA) tasks, addressing replayed audio. Notably,
ASVspoof 2021 introduced a deepfake detection track to tackle neural speech synthesis.
Other corpora such as FMFCC-a (Chinese) [39], HABLA (Spanish) [9], CFAD (Chinese)
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[23], and MLAAD (38 languages) [26] have further expanded the scope of spoof detection.
However, all these datasets lack code-switching dynamics and are dominated by English or
other high-resource languages.

Parallel to the development of datasets, researchers have proposed diverse architectures
for spoof detection. Early handcrafted features like MFCCs and CQCCs [31] captured pho-
netic and spectral cues but struggled with neural vocoder outputs. Deep learning shifted the
paradigm to end-to-end systems, particularly 1D CNNs on raw waveforms captured fine-
grained temporal anomalies [8]. RawNet [16] and A-RawNet2 [14] achieved 4.61% EER
on ASVspoof 2019 LA [32] through residual blocks and attention mechanisms. RawNet3
[36] added dynamic gradient masking for robustness but increased the parameters to 5.2M,
limiting mobile deployment. These models often miss spectral artifacts detectable in time-
frequency representations [33], addressed by 2D CNNs like DualSpecNet [12], which re-
duced EER to 2.2% on ASVspoof 2021 DF but required ∼ 10M parameters. Hybrid fu-
sion models that combine MFCCs, spectrograms, and raw audio inputs achieve competitive
performance by leveraging complementary representations [17]. More recently, efficient
CNN-based models such as BC-ResMax [6] (0.47% EER, 0.8M parameters) and DDWS-
Conv [18] have shown strong efficiency. Similarly, self-attention based fusion systems [15]
achieved a 74.6% EER reduction but relied on computationally heavy attention layers (3.5M
parameters), making them less practical for edge deployment.

Self-supervised learning (SSL) has also gained attraction. Wav2vec 2.0 [24] improved
cross-lingual robustness with a 12% relative EER reduction, while AASIST [35] and its
Urdu-focused extension AASIST-L [27] demonstrated strong deepfake detection (0.52%
EER). However, SSL-based systems often require large-scale pretraining and significant
computational resources. Cross-lingual evaluations further highlight limitations: conven-
tional detectors tend to degrade sharply, while linguistically adaptive models, such as Speak-
erNet [13], achieve as low as 0.02% EER on English–Urdu mixtures. Indo-Aryan languages
also exhibit distinct high-frequency spoofing artifacts [4], emphasizing the need for multi-
lingual adaptation and generalization. Transformer-based spectrogram models (AST [10],
SSAST [11], HTS-AT [5]) achieved EERs in the range of 2.85%–2.52%, but their large pa-
rameter counts (30–85M) make them computationally expensive, limiting deployment on
edge devices.

Despite these advances, a fundamental challenge persists: the absence of large-scale
datasets for low-resource and multilingual languages. Existing corpora focus mainly on
English and a few high-resource languages, leaving multilingual and code-switched scenar-
ios underrepresented. This limitation restricts model generalization across unseen spoof-
ing techniques, languages, and recording conditions, underscoring the need for datasets and
lightweight models tailored to low-resource multilingual contexts. Spectrogram-only CNNs,
such as EfficientNetV2, offer faster inference but lack phonetic granularity, which is crucial
for languages with rich vocalic inventories, such as Hindi and Urdu. These trade-offs be-
tween accuracy and efficiency are particularly acute for South Asian low-resource languages,
where both phoneme-level cues (captured by MFCCs) and spectral anomalies (captured by
Mel spectrograms) are needed to detect deepfakes.
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Datasets Split # Bona fide # Spoofed # Male # Female
Proposed (Urdu) Train 3,418 15,300 11 7

Dev 3,857 13,600 11 6
Eval 5,431 59,500 21 14

Proposed (Hindi) Train 2,287 20,500 14 7
Dev 2,520 21,000 14 7
Eval 3,329 85,895 28 14

Urdu-DF Train 2,199 2,199 7 4
Dev 599 597 1 2
Eval 600 600 2 1

ASVspoof 2019 Train 2,580 22,800 11 8
Dev 2,487 22,296 13 7
Eval 7,355 63,882 24 14

ASVspoof 2021 Eval 7,558 145,638 24 14

Table 1: Dataset Statistics.

3 Methodology

3.1 Datasets

This work employs multiple datasets, detailed below, for robust evaluation of the proposed
MFCC-Effnet anti-spoofing framework under diverse and challenging conditions.

3.1.1 Proposed Dataset

The dataset proposed in this work is the first large-scale multilingual spoofing corpus de-
signed for low-resource South Asian languages. It includes both bona fide and spoofed
speech in Urdu and Hindi with natural code-switching into English, enabling robust evalu-
ation in linguistically diverse scenarios. The bona fide samples are sourced from the MAV-
Celeb dataset [29], which contains speech from 154 celebrity speakers recorded under real-
istic conditions with natural background noise, language switching, and multi-speaker con-
versational contexts. To generate spoofed utterances while preserving the multilingual and
multi-speaker characteristics of bona fide speech, we employ five state-of-the-art VC sys-
tems: FreeVC [21], Diff-Hier-VC [7], HierSpeech++ [19], KNN-VC [3], and SeedVC [22].
For each target speaker, one utterance is selected as the reference, and spoofed samples are
created by converting source utterances from other speakers into the target voice. This pro-
cess yields ten spoofed audios per speaker per VC model. All audio files are stored in FLAC
format with a 16 kHz sampling rate and an average utterance duration of 15 seconds. In total,
the dataset contains 215,795 spoofed and 20,842 bona fide utterances from 154 speakers (70
Urdu and 84 Hindi). The corpus is partitioned into training, development, and evaluation
subsets in a 25:25:50 ratio, balanced across both gender and language. This split follows the
design philosophy of the ASVspoof challenges, where the evaluation partition is deliberately
larger than training and development to encourage generalization. Table 1 summarizes the
language-wise statistics and the train–dev–eval distribution of the proposed dataset.
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Figure 1: Mel-Spectrograms Generation Pipeline.

3.1.2 ASVspoof LA Datasets

The ASVspoof 2019 [32] and 2021 [38] datasets are designed to benchmark ASV systems
against spoofing attacks. ASVspoof 2019 focuses on LA attacks using synthetic speech
generated by 17 TTS and VC systems, with genuine utterances from 107 English-speaking
speakers, recorded at 16 kHz in FLAC format and divided into training, development, and
evaluation subsets. ASVspoof [38] significantly expands on this by including both logical
and physical access (PA) scenarios, introducing more sophisticated spoofing attacks such as
those based on modern neural vocoders and replay attacks captured under varied real-world
conditions. It encompasses a diverse range of acoustic environments, including various play-
back/recording devices, background noise, and room acoustics. The 2021 [38] challenge
supports two evaluation tracks, i.e, LA for synthetic speech detection and PA for replay
attack detection, which offer a more rigorous and realistic assessment of ASV system ro-
bustness. Detailed statistics and dataset configurations for both editions are summarized in
Table 1.

3.1.3 Urdu-DF Corpus

The Urdu deepfake corpus [27] comprises genuine, successfully trained voice samples and
spoofing disturbances generated by two TTS systems: Tacotron and VITS. This dataset con-
sists of clean audio from 17 speakers (7 female and 10 male) recorded in a professional
studio. The participants recorded 708 sentences from the Phonetically Rich Urdu Speech
(PRUS) corpus and 495 sentences from the news corpus [27]. Deepfake samples were gen-
erated exclusively for the news corpus, with 495 samples synthesized using each of the
Tacotron and VITS models. The public corpus contains almost 200 bona fide and 200
spoofed samples per speaker, totaling 6,794 audio samples. A complete summary of dataset
statistics is provided in Table 1.

3.2 Preprocessing: Spectrogram Generation
Figure 1 illustrates the Mel spectrogram generation pipeline for 2D audio signal representa-
tion from raw audio files (FLAC format, 16 kHz sampling rate). Each audio file is loaded
and converted from stereo to mono if needed. To ensure consistency across samples and
manage memory efficiently, we limit all audio to 10 seconds, applying truncation or zero-
padding as appropriate. Mel-spectrograms are computed with 128 mel bins using a 1024-
point FFT and a hop length of 512. The power spectrograms are converted to the decibel
scale via amplitude-to-dB transformation. The resulting spectrogram matrix is visualized
as a 256×256 image using the Inferno colormap, without axis labels, and saved as PNG
files. We organize these outputs by dataset split (train, dev, eval) and class label (bona fide,
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Figure 2: Overview of the proposed MFCC-EffNet architecture.

spoof). The entire process is optimized for batch processing using PyTorch and Torchaudio,
allowing for efficient generation of large-scale spectrogram datasets.

3.3 Feature Extraction: MFCC Computation

Our framework uses a dedicated MFCC extraction pipeline to generate compact, perceptu-
ally relevant features for spoof detection. MFCCs are effective in speech processing due to
their ability to mimic the human auditory system [2]. As shown in Figure 2, 16 kHz audio
is first standardized and converted to mono and padded or truncated to 10 seconds. It is then
segmented using a 25 ms Hamming window with a 10 ms hop size. Each frame yields a 13-
dimensional MFCC vector computed via short-time Fourier transform (STFT), followed by
Mel filterbank analysis, logarithmic compression, and a Discrete Cosine Transform (DCT),
as defined by:

MFCCn =
K

∑
k=1

log(Ek) · cos
[

πn(k−0.5)
K

]
, n = 1,2, . . . ,N (1)

where Ek is the output of the kth Mel filter, K is the number of filters, and N is the number
of coefficients (typically 13). We apply mean pooling across time to produce a fixed-size
embedding, which is processed by two fully connected layers (128 and 64 units, both with
ReLU and dropout) to enhance discriminability. The entire pipeline is implemented using a
Kaldi-compatible extractor with GPU-accelerated Torchaudio for scalable batch processing.

3.4 Feature Extraction: Visual Computation

For the visual feature extraction module, EfficientNetV2-S [30] is used as a backbone model,
as illustrated in Figure 2. EfficientNetV2-S [30] is a highly efficient CNN architecture
that balances accuracy and computational cost via training-aware neural architecture search
through compound scaling of depth, width, and resolution. In our modified architecture, the
first convolutional layer of EfficientNetV2-S is adapted to accept single-channel (grayscale)
spectrogram images (of shape 1×296×296) instead of the standard three-channel RGB in-
put. This enables the model to directly process the spectrograms without requiring color
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transformations. We initialize the backbone using pre-trained ImageNet weights and fine-
tune it on our task-specific dataset to improve convergence. To reduce computational load
and avoid redundancy in high-level visual features, we truncate the EfficientNetV2-S back-
bone to retain only the first five stages, up to the 64-channel Fused-MBConv4 block. These
layers include an initial 3×3 convolution (stride 2, 24 channels), two Fused-MBConv1
blocks (24 channels), four Fused-MBConv4 blocks (stride 2, 48 channels), and another four
Fused-MBConv4 blocks (64 channels, stride 2). This truncation limits the total parameter
count to under 250K, offering a favorable trade-off between model efficiency and perfor-
mance in our spectrogram-based classification task. As shown in Figure 2, the extracted
visual features from this truncated backbone are then concatenated with audio features be-
fore classification.

3.5 Classification
After extracting features from both the visual and audio branches, the resulting embeddings
are concatenated to form a unified feature vector. This joint representation captures comple-
mentary information from both the spectrogram images and the MFCCs. The combined vec-
tor is passed through an additional dense layer with 128 units, ReLU activation, and dropout,
followed by the final output layer that produces logits for binary classification (bona fide
vs. spoofed speech). A softmax activation function is applied to obtain class probabilities,
as represented in Figure 2 in the classification block. To address the class imbalance in the
dataset and improve the model’s focus on harder-to-classify examples, a label-smoothing fo-
cal loss is used. This loss function helps prevent over-confidence in the model’s predictions
while placing greater emphasis on samples that lie near the decision boundary, ultimately
enhancing the system’s robustness in detecting spoofing attacks.

4 EXPERIMENT

4.1 Performance Metrics
We evaluated the system using standard metrics: precision, recall, accuracy, confusion ma-
trix, and equal error rate (EER). Precision is the ratio of correctly predicted positives to all
predicted positives:

Precision =
T P

T P+FP
, (2)

Recall measures the proportion of actual positives correctly identified:

Recall =
T P

T P+FN
, (3)

Accuracy reflects the overall correctness of predictions:

Accuracy =
T P+T N

T P+T N +FP+FN
, (4)

The confusion matrix summarizes classification outcomes:

Confusion Matrix =

[
T P FN
FP T N

]
, (5)



8 HAMZA ET AL.: MFCC-EFFNET

Dataset EER Accuracy Bona fide (Prec. / Rec. / F1) Spoof (Prec. / Rec. / F1) TPBona FNBona TPSpoo f FPSpoo f

Proposed (Urdu) 0.53% 99.79% 0.990 0.984 0.987 0.998 0.999 0.998 5345 86 59,450 50

Proposed (Hindi) 0.81% 99.45% 0.910 0.973 0.941 0.999 0.994 0.996 3243 85 84,655 482

Urdu-DF 0.41% 99.17% 0.988 0.991 0.990 0.988 0.985 0.986 595 5 593 7

ASVspoof 2019 (LA) 2.04% 96.14% 0.892 0.915 0.903 0.967 0.954 0.960 6,729 626 60,977 2,905

ASVspoof 2021 (LA) 5.14% 89.66% 0.812 0.823 0.817 0.897 0.871 0.884 12,194 2,622 116,236 17,124

Table 2: MFCC-EffNet performance across multiple datasets.

Finally, the equal error rate (EER) denotes the operating point where the false acceptance
rate (FAR) equals the false rejection rate (FRR):

EER = FAR(τ) = FRR(τ), (6)

with τ representing the decision threshold. Together, these metrics capture system accuracy,
robustness, and trade-offs in spoof detection.

4.2 Experimental Setup
All experiments were conducted using PyTorch on a workstation equipped with two NVIDIA
RTX 5000 GPUs, each providing 16GB of VRAM. The proposed MFCC-EffNet architec-
ture integrates dual input branches: a visual stream based on EfficientNetV2-S and an audio
stream based on MFCC features. The proposed dataset served as the primary benchmark; the
training set was used for model fitting, the development set for validation and model weight
updates, and the evaluation set for final performance assessment with dataset partitioning
strictly following the protocol detailed in Table 1. We employed the AdamW optimizer with
a learning rate of 10−3 and weight decay of 10−4. A learning rate scheduler (ReduceL-
ROnPlateau) was used to adaptively reduce the learning rate upon plateauing validation loss,
with a factor of 0.5 and patience of 3 epochs. To address class imbalance, training used
a combination of label-smoothing focal loss (α = 0.9, γ = 2, smoothing factor 0.05) and
weighted cross-entropy loss, where class weights were computed inversely proportional to
class frequencies. Balanced sampling further ensured equitable class representation during
training. Mixed precision training with automatic gradient scaling was enabled for compu-
tational efficiency. The model was trained for 25 epochs with a batch size of 128, and the
checkpoint with the lowest equal error rate (EER) on the development set was selected for
final evaluation.

4.3 Results & Discussions
Table 2 presents a systematic evaluation of the MFCC-EffNet model across five test sets: the
Urdu and Hindi sets of the proposed multilingual corpora, two ASVspoof benchmarks, and
a low-resource deepfake scenario. On the proposed Urdu set, the model maintains high effi-
cacy (EER=0.53%) indicating that spectrogram and MFCC features learned effectively to a
linguistic context without overfitting. The model shows a modest decline (EER=0.81%) on
the proposed Hindi set likely from overlapping spectral characteristics. On the Urdu deep-
fake corpus containing TTS attacks (VITS TTS & Tacotron) [27], MFCC-EffNet achieves
0.41% EER, highlighting robust transferability to low-resource deepfake scenarios. In con-
trast, ASVspoof 2019 LA [32] yields 2.04% EER with 2,905 false alarms, and ASVspoof
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Model Architecture ASVspoof 2019 (LA) ASVspoof 2021 (LA) Urdu-DF [27]

MFCC-EffNet (This work) 2D CNN / MFCC + spectrogram 2.04 5.14 0.41

Hybrid CNN-LSTM [25] 2D CNN + LSTM / MFCC + CQCC 2.20 — —

MFCC + CNN (Baseline)[38] MFCCs as 2D input to CNN 6.73 12.60 —

RawNet2 [14] 1D CNN / Raw waveform 4.61 8.36 0.51

Spectrogram ResNet41 [4] 2D CNN / Mel + Gammatone spectrogram 1.70 0.50 —

AASIST-L [35] 1D CNN / Temporal Convolutions — — 0.5

Table 3: Comparison with existing approaches in terms of EER (%).

2021 LA (14,816 / 133,360) shows 5.14% EER with over 17,000 misclassified spoofs. This
emphasizes the need for domain-robust training, e.g., adversarial regularization, dynamic
augmentation, and self-supervised pretraining.

Table 3 compares MFCC-EffNet performance with recent spoof detectors. MFCC-EffNet
substantially outperforms MFCC-only CNN baselines (6.73%, 12.60%) and the Hybrid CNN–
LSTM [25] (2.20% on 2019 LA). Against raw-waveform systems like A-RawNet2 (4.61%,
8.36%), MFCC-EffNet shows a clear advantage. Spectrogram-ResNet41 [4] achieves strong
scores (1.70% 2019 LA, 0.50% 2021 DF) but its 10M-parameter backbone risks overfit-
ting and requires careful regularization. In contrast, MFCC-EffNet’s convolution architec-
ture produces smoother training gradients, robustness to unseen attacks, and inference under
5ms/sample. On the Urdu-DF corpus, AASIST-L [35] achieves 0.50% EER, while MFCC-
EffNet attains 0.41% without task-specific tuning, showing superior generalization to di-
verse deepfake methods. MFCC-EffNet outperforms hybrid CNN-LSTM [28] (2.2% EER)
and their model required 10× higher computational cost, underscoring MFCC-EffNet’s effi-
ciency–performance advantage. Overall, the proposed model takes advantage of both 1D and
2D audio representations by using MFCCs to encode phonetic structures, while spectrogram
embeddings capture residual high-frequency noise and phase distortions.

5 Conclusion

This work introduced a multilingual spoofed speech dataset and MFCC-EffNet, a com-
pact spoof detector that fuses MFCC descriptors with truncated EfficientNetV2 spectro-
gram embeddings through cross-attention. The framework achieves state-of-the-art perfor-
mance across both controlled multilingual datasets and large-scale benchmarks, demonstrat-
ing strong generalization to diverse spoofing techniques. Notably, MFCC-EffNet delivers
robust detection on Urdu and Hindi speech under low-resource and code-switching condi-
tions, while remaining competitive on ASVspoof benchmarks. These results highlight the
importance of domain-adapted feature fusion in addressing the distinct challenges of South
Asian speech, including rich phonetic inventories and variable prosody. Looking ahead, fu-
ture directions include self-supervised multilingual pretraining, multi-task modeling of code-
switching dynamics, and adversarial feature regularization to enhance resilience against un-
constrained and evolving attacks.
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