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Abstract

Deepfakes, enabled by recent advances in generative models, pose significant ethi-
cal, societal, and security risks. Although many detection methods achieve strong intra-
dataset performance, they often degrade on low-quality or cross-domain data due to com-
pression artifacts and unseen manipulations. To address this, we introduce LGSFNet,
a robust deepfake detection framework that fuses local and global forgery semantics
in a dual-path architecture. The design integrates a Spatial Resolution Adapter (SRA)
to extract local low-level features and a novel Local Semantic Fusion Adapter (LSFA)
to inject these cues into the DINOvV3 transformer backbone for multi-stage feature fu-
sion with parameter-efficient training. Experiments on FaceForensics++ demonstrate
state-of-the-art results across all four manipulation types, achieving up to 99.98% AUC.
Cross-corpora evaluations on Celeb-DF, DFD, and DFDC further highlight strong gen-
eralization, with improvements of up to +11.2% AUC over prior methods. A t-SNE
visualization confirms discriminative representation of forgery features, while ablation
studies validate that three LSFA modules achieve the best trade-off between perfor-
mance and complexity. Overall, LGSFNet provides a robust, efficient, and generaliz-
able solution for detecting low-quality and unseen deepfakes, moving toward reliable
real-world deployment. The source code can be accessed using the link: https:
//github.com/zulkaifsajjad/LGSFNet

1 Introduction

Recent advances in deep generative models have enabled the synthesis of hyper-realistic fa-
cial images and videos that are often indistinguishable to the human eye. When misused,
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these techniques facilitate misinformation and fabricated content across entertainment, so-
cial, and political domains [19, 20, 31, 32]. Known as deepfakes, such media raise serious
ethical and security concerns. Common approaches include face swapping, face synthesis,
attribute manipulation, expression transfer, and eye or lip-sync synthesis. Powered largely
by generative adversarial networks (GANs) and autoencoders [7, 8, 25, 37], these methods
allow users with minimal expertise to generate highly realistic manipulations. As a result,
distinguishing authentic from synthetic content has become increasingly difficult, with inno-
vation in generation techniques continually outpacing detection methods and sustaining the
ongoing contest between forgers and forensic defenders.

To counter the growing threat of deepfakes, researchers have proposed detection methods
that can be broadly categorized into spatial-based and frequency-based approaches. Spatial-
based methods operate in the image domain, aiming to capture low-level forgery semantics.
For instance, various studies have analyzed local textures [2, 10, 45, 47] to highlight ap-
pearance discrepancies between authentic and manipulated faces. Visual artifacts such as
blending boundaries, which frequently arise from face forgery operations, have also been
leveraged for detection [14]. In addition, a few studies [42, 46] investigate patch diffusion
and path inconsistencies to model the correlation patterns between local features in real and
synthetic content. Conversely, frequency-based approaches exploit spectral representations
to identify forgery artifacts. For example, some methods [5, 6] extract the high-frequency
components of the Discrete Fourier Transform (DFT) to characterize differences in spec-
tral distribution between genuine and forged images. Similarly, F3-Net [27] employs local
frequency statistics to capture forgery cues and introduces specialized designs to detect low-
quality manipulations.

Existing detection methods perform well under intra-dataset evaluation, where training
and test sets share similar distributions, but their effectiveness declines in cross-domain set-
tings. This challenge is compounded by diverse image and video compression techniques
[21, 24, 28] widely used on social media, which obscure the subtle artifacts left by manip-
ulation. In highly compressed videos, cues such as texture, lighting, and boundary incon-
sistencies are often blurred, making detection difficult. Therefore, developing robust and
generalizable deepfake detection methods is critical to counter the growing sophistication of
generative forgeries. To address these challenges, and inspired by recent work [13, 26, 33],
combining Convolutional Neural Networks (CNNs) with Vision Transformers (ViTs) has
proven effective for distinguishing authentic from manipulated media. CNNs capture lo-
cal spatial cues [23, 38] such as texture irregularities, edge inconsistencies, and pixel-level
artifacts introduced during forgery, while ViTs model long-range dependencies and global
semantics [38], enabling analysis of facial structure, contextual coherence, and temporal
consistency. Their fusion thus yields a more robust framework, with CNNs providing fine-
grained details and ViTs capturing broader contextual relationships.

We propose LGSFNet, a Local-Global Semantic Fusion Network that exploits comple-
mentary forgery semantics extracted from images. The network is organized into N stages.
The first stage incorporates a pretrained DINOv3 backbone [34], which remains frozen dur-
ing training, alongside our proposed Local Semantic Fusion Adapter (LSFA) with train-
able parameters to facilitate efficient adaptation. In addition, the head module integrates
the embedding layer of DINOv3 to generate learnable embeddings and a Spatial Resolution
Adapter (SRA) to capture fine-grained local forgery semantics. By adopting a multi-stage
fusion strategy, LGSFNet effectively combines local artifact details with global contextual
representations, thereby enhancing the detection of low-quality and highly compressed ma-
nipulated videos.
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The key contributions of this work are as follows:

1. A dual-path architecture that combines the Spatial Resolution Adapter (SRA) with
DINOv3 embeddings to capture fine-grained local forgery semantics.

2. A novel Local Semantic Fusion Adapter (LSFA) that integrates global high-level se-
mantics with local low-level features at multiple stages of DINOv3, enabling a more
generalizable representation for detecting low-quality manipulated video frames.

3. An efficient integration strategy for LSFA that balances accuracy and model com-
plexity, achieving parameter-efficient training with only 20% of the parameters being
trainable.

2 Related Work

CNN and ViT-based Hybrid Approaches: Many studies have integrated specialized mod-
ules into CNN- and ViT-based architectures to enhance the modeling of long-range depen-
dencies. For instance, a spatiotemporal inconsistency learning strategy [9] extracts general-
izable forgery cues across both spatial and temporal domains. Similarly, a dynamic incon-
sistency learning method [10] detects subtle temporal artifacts in deepfake videos, capturing
both global semantics and dynamic inconsistencies through a two-branch architecture. Al-
though effective in cross-dataset evaluation, this approach struggles with low-quality videos
and incurs a high computational cost due to its two-branch design and frame-level process-
ing, which limits its suitability for real-time and resource-constrained environments. Other
works have explored alternative strategies. A triplet network guided by depth maps [17]
improves feature separation by combining depth estimation with triplet loss; however, its
performance is limited in scenarios where depth signals are unreliable, such as compressed
or occluded video frames. An efficient capsule network [12] has also been proposed to detect
shallow and deep-fake facial forgeries by modeling part-whole relationships in facial images,
incorporating the activation function of the max feature map to improve robustness and re-
duce complexity. More recently, a framework leveraging a pre-trained ViT with dual-level
forgery modeling was introduced in the DeepFake Adapter [33]. This method integrates
globally aware bottleneck adapters with locally aware spatial adapters to enable lightweight
adaptation, achieving strong results on benchmark datasets such as FF++ and DFDC. Sim-
ilarly, a multi-scale framework [41] employs high-frequency feature extraction and fusion
modules to capture generalizable forgery semantics from the frequency domain. Despite
their contributions, these methods remain less effective on low-quality video frames, where
critical forgery cues are often suppressed or lost due to compression artifacts.

3 Methodology

3.1 Architecture Overview

The proposed architecture of LGSFNet is depicted in Fig. 1. Given an image I € Rf*W*C

with spatial resolution H x W and number of channels C = 3, it is fed into the encoder, which
consists of a head and intermediate stages. The input image / is processed in parallel by the
DINOv3 embedding layer and the Spatial Resolution Adapter (SRA) module in the head part
of the proposed encoder.
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Figure 1: Block diagram of the proposed LGSFNet architecture.

A DINOv3 embedding layer divides the image into P X P non-overlapping patches and
flattens them into sequential patches I, € REX(P Z'C), where K = H - W /P? is the total number
of patches. These flattened patches are projected into D-dimensional embeddings and added
with a positional embedding f[}ino € R (P2OxD (4 retain the positional information.

Inspired by EfficientNetV2 [35], a lightweight SRA module depicted in Fig. 1 is com-
posed of six sequential blocks: the first three are Fused-MBConv blocks, followed by two
MBConv blocks, and concluding with a TripleConv block. The module combines Fused-
MBConv and MBConv blocks to leverage fast feature extraction. Fused-MBConv merges
expansion and depthwise convolution into a single 3 x 3 operation, with less computa-
tional cost, making them suitable for the initial SRA layers. On the other hand, MBConv
blocks, first introduced in [30], utilize depthwise separable convolutions with an expan-
sion—projection mechanism, enabling rich forgery feature representations. At last, the Triple-
Conv block contains three consecutive 3 x 3 convolutional layers, each followed by Batch
Normalization and ReLU activation, and it is designed to align the output channel dimension
with the embedding dimension. By employing this strategy, the SRA module helps to extract
high-quality, low-level feature maps. Each feature map is then projected into a standard em-
bedding dimension D using a projection layer. The resulting vector from a projection layer is

a unified feature representation f. € RB* (%%)<D_ This efficient design of the SRA module
enables the rich, local low-level features, effectively capturing fine-grained spatial details.

3.1.1 Transformers with N Stages

The extracted features f U}mo and f!  from the head part of the encoder are passed through the
1% Stage of the encoder block. A pre-trained DINOv3-base backbone is utilized, comprising
a total of L blocks, where each block consists of a Memory-Efficient Attention (MEA) and
a Multi-Layer Perceptron (MLP) layer. N stages are formed by evenly grouping L blocks,
with each stage containing L/N blocks of the DINOv3 and a single Local Semantic fusion
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Adapter (LSFA) module for integration. We develop the LSFA interaction component for the
SRA module, which facilitates the engagement of these features (e.g., fslm in the 1* Stage)
with features from both the beginning of DINOv3 blocks at that Stage (e.g., fdll.n , and fi
in the 1* Stage).

The Multi-Head Cross Attention (MHCA) mechanism in the LSFA module, at the start of
each DINOV3 stage, facilitates progressive adaptation. The MHCA layer incorporates local
low-level CNN features into the DINOv3, allowing it to process input with insights from
local patterns. This feedback loop fosters iterative alignment between high-level (DINOv3)
and low-level (SRA) features, enhancing generalization to fine details. Thus, this fusion of
local features from the SRA module at the start of each stage of DINOV3 is a purposeful
design for synchronized local-global understanding.

Specifically, the interaction in the i Stage begins with a Multi-Head Cross Attention
(MHCA) operation between fi,, and the features from the beginning of DINOv3 fi. " as
shown in Fig. 1. During this process, the normalized DINOv3 features E,m , serves as the
query while the normalized SRA features ﬁm are used as both the key and value as follows,

failino = fc;"ino +MHCA (fcliina’ fs{rav f;ra) (1)

where fj’im) are the features after the interaction of the LSFA module. These features are
added element-wise with f). ~and then fed back into the DINOv3 blocks of the i Stage

resulting in ft’;;l) features. This interaction process injects the low-level features from the
SRA module into the forward process of DINOv3 blocks. f;,, represents the same low-level
features that will interact with the updated features from the DINOv3 blocks f;;i in the
subsequent stage. Consequently, the encoded features will be further enhanced during the
fusion process at the start of each stage.
After the extraction of 9{:{01 features through N stages of the encoder block, the features
are fed-forwarded to the Linear classifier (LC) and compute the cross-entropy loss.
L£=H(LC(fYh), y) )

dino

where LC is the linear classifier, é\l’;ﬂl are the features extracted from the encoder, and y

are labels form the corresponding samples, and H(+) is the cross-entropy function. We train
SRA and all the LSFA modules with the cross-entropy loss function £ in an end-to-end
manner. In summary, by incorporating the high-level forgery features from the pre-trained
DINOvV3 that interact with local low-level features from SRA modules, our model based on
the adaptation of low-level forgery semantics at multiple stages of DINOv3, could exploit
better generalizable forgery representations.

4 Experiments

4.1 Benchmark Datasets

FaceForensics++ (FF++) [29] : FF++ dataset is used as a standard benchmark for deepfake
detection. It contains 1,000 real YouTube videos and 4,000 fake videos generated by four
distinct categories of manipulated techniques: Deepfakes, Face2Face, Neural Textures, and
FaceSwap. We train our model separately on each of the four categories of fake videos, as
well as on a combined faceforensics++ dataset.
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Celeb-DF [16] : Celeb-DF is a well-known dataset for developing and evaluating deepfake
detection models. It consists of 590 real videos and 5,639 manipulated videos collected
from YouTube. The fake videos are generated by using advanced synthesis methods, which
enhance the quality and reduce the visible artifacts typically found in deepfake videos.
Deepfake Detection Challenge (DFDC) [1] : DFDC contains 1,131 real videos and 4,119
manipulated videos that have been generated using several unknown manipulation methods.
The faces in these videos may be partially real and partially forged, and most state-of-the-art
algorithms struggle to detect whether the frame is real or fake.

DeepfakeDetection (DFD) [4] : DFD is collected by Google/Jigsaw, which has 363 real
videos and 3,068 fake videos of 28 consented individuals of various genders, ages and ethnic
groups. The details of the synthesis algorithm are not disclosed, but it is likely to be an
improved implementation of the basic DeepFake maker algorithm.

4.2 Implementation Details:

The proposed LGSFNet framework is implemented using PyTorch 3.5.0. version. We only
use the FaceForensics++ with 40% compression (low-quality) dataset for training and eval-
uation, and the other three datasets for cross-corpora evaluation to check the generalization
of our method. Firstly, faces are extracted from the FaceForensics++ video dataset using a
multi-task cascaded convolutional network (MTCNN) [43], ensuring only facial sections are
analyzed. Images are resized to 384 x384 pixels for consistency. Training includes multiple
augmentations, such as flips and small-angle rotations, to enhance the model’s robustness
against real-world variations. The training occurred on a system equipped with an NVIDIA
RTX 3090 GPU, which also included 24 GB of VRAM memory. An initial learning rate of
2e-5, a batch size of 32 within 30 epochs, and the Adam optimizer are used in training. The
linear classifier includes only a single linear layer to classify the forgery or real faces. The
training procedure utilized a learning rate scheduler that automatically adjusted the learning
rate by evaluating validation accuracy. Standard-defined training, validation, and test sets of
all datasets with 70%, 15%, and 15% splits, respectively, are used in this study.

4.3 Intra-domain subset evaluation of FF++:

To assess the effectiveness of the proposed LGSFNet framework, an intra-dataset evaluation
is conducted on the FF++ dataset, covering its four manipulation types: DeepFakes (DF),
FaceSwap (FS), Face2Face (F2F), and NeuralTextures (NT). The evaluation is performed on
the low-quality (40% compression) version of FF++, which poses additional challenges due
to compression artifacts. For a comprehensive comparison, we choose Xception [3], ResNet-
50 [11], and EfficientNet-B4 [35] as baseline results. Table 1 reports the results, where both
training and testing are carried out on the same manipulation type. LGSFNet consistently
outperforms state-of-the-art (SOTA) methods across all four forgeries. In particular, the
framework achieves 99.82% AUC on DF, 99.62% on FS, and 99.98% on F2F, improving
upon the latest SOTA methods such as TripletNet [17] and Shao et al. [33] by 1-2% AUC.
For the NT manipulation, which is the most challenging due to its complex texture synthesis,
LGSFNet attains 98.94% AUC, surpassing competitive methods including CapsuleNet [12].
These results highlight the robustness and effectiveness of LGSFNet, particularly the benefit
of integrating local and global forgery semantics through the LSFA and SRA modules.

For further validation, the proposed LGSFNet is trained on the combined FF++ dataset
and evaluated separately on each manipulation type, as presented in Table 2. This setup
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y Method / Year | DF | FS [ F2F | NT |
Xception [3], 2017 96.78 | 9464 [ 91.07 | 87.14
S-MIL-T [15], 2020 97.14 | 96.07 [ 91.07 [ 8679
ADD-Net [39], 2020 90.36 | 80.00 [ 7821 [ 69.29
DSANet [44], 2020 97.86 | 9536 [ 9357 [ 9250

STIL [9], 2021 9821 | 97.14 [ 9214 | 9178
SIM [10], 2022 99.28 | 9786 [ 9571 94.28

CapsuleNet [12], 2023 98.61 99.51 99.68 95.14
TripletNet [17], 2023 99.13 97.64 96.53 85.10
Shao et al. [33], 2025 99.65 99.20 97.61 94.30

Ours 99.82 99.62 99.98 98.94

Table 1: Model trained and tested on sub-datasets of FF++ separated by four types of forg-
eries: F2F, FS, NT, and DF. Best results are highlighted in bold.

Method / Year F2F FS NT DF
ResNet-50 [11], 2016 93.76 93.30 83.43 93.34
Xception [3], 2017 96.92 95.85 94.00 97.47
EfficientNet-B4 [36], 2019 97.41 97.10 90.87 97.02
F3-Net [27], 2020 96.56 94.14 93.15 97.67
SRM [22], 2021 96.49 97.59 92.66 97.64
UCF [40], 2023 97.12 97.46 91.99 97.40
Wei et al. [41], 2024 99.15 99.36 96.23 99.29
Lin et al. [18], 2024 98.37 97.97 95.06 98.86
Ours 99.81 99.92 98.10 99.18

Table 2: Model trained on combined FF++ and evaluated on intra-domain on sub-datasets of
FF++ separated by four types of forgeries: F2F, FS, NT, and DF. Best results are highlighted
in bold.

provides more balanced learning across different forgeries. Even under this more challenging
setting, LGSFNet continues to demonstrate superior performance, achieving 99.81% AUC
on F2F, 99.92% on FS, and 98.10% on NT. The consistent improvements across both single-
type and combined-type training strategies indicate that LGSFNet not only excels in intra-
type evaluation but also exhibits strong generalization capability when exposed to diverse
manipulation types.

4.4 Cross-dataset Evaluation

To further assess the generalization ability of LGSFNet on unseen forgeries with larger vari-
ations, cross-corpora experiments are conducted where the training is performed on the C40
version of FF++ and testing data originate from three widely used benchmarks: Celeb-DF,
DFD, and DFDC. The results, summarized in Table 3, show that LGSFNet consistently
outperforms SOTA approaches by a significant margin in terms of AUC. In particular, the
framework achieves 86.38% on Celeb-DF, 84.03% on DFD, and 64.41% on DFDC, surpass-
ing Wei et al. [41] by approximately +9.4%, +1.0%, and +1.9%, and outperforming Lin et al.
[18] by +11.2%, +3.5%, and +2.2% on the respective datasets. Compared to earlier baselines
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Method / Year [ FF++ | Celeb-DF | DFD | DFDC |
ResNet-50 [11], 2016 91.06 64.78 7294 | 5338
Xception [3], 2017 95.93 69.37 7808 | 56.87
EfficientNet-B4 [36], 2019 | 95.63 67.80 76.81 56.59
F3-Net [27], 2020 95.64 67.62 80.51 55.96
SRM [22], 2021 96.30 68.08 7757 | 58.22
UCF [40], 2023 96.17 70.48 7568 | 55.20
Wei et al. [41], 2024 98.58 76.94 83.02 | 6255
Lin et al. [18], 2024 97.68 75.19 80.56 | 62.18
Ours 99.36 86.38 8§4.03 | 64.41

Table 3: Model trained on combined FF++ and Cross-corpora evaluation on Celeb-DF, DFD,
and DFDC. Best results are highlighted in bold.

such as ResNet50 [11] and Xception [3], the improvements are even more pronounced, of-
ten exceeding 15-20% absolute gains on the challenging cross-domain benchmarks. These
results clearly demonstrate that our LGSFNet framework, regularized by generalizable high-
level forgery semantics from the pre-trained DINOv3 backbone and enhanced by the LSFA
module for fusion of local low-level forgery cues, achieves stronger generalization across
diverse datasets. This highlights the robustness of our approach for practical deepfake detec-
tion scenarios, where training and testing conditions often differ significantly.

4.5 Visualization of Features

To assess the representation capability of the proposed architecture, which integrates the
dual-path design with the efficient fusion of the LSFA module into DINOv3, a t-SNE (t-
distributed stochastic neighbor embedding) visualization is generated from the extracted
features of each manipulation type (Fig. 2). In the 2D t-SNE map, each dot corresponds
to an image, with green representing real samples and red representing fake samples. Well-
separated clusters reflect effective feature discrimination, whereas overlapping regions sug-
gest weaker generalization. For this analysis, 1,500 real and 1,500 fake samples are randomly
selected from the test set. The results demonstrate that LGSFNet achieves strong general-
ization, maintaining a clear separation between real and fake clusters. Minor overlaps are
observed in the NT manipulation, likely due to its subtle texture variations, which slightly
reduce separability. Overall, the framework exhibits robust discriminative embedding learn-
ing, with most samples forming distinct and well-preserved spatial clusters.

4.6 Ablation Study

To further validate the design of LGSFNet, an ablation study is conducted by varying the
number of LSFA modules and reporting performance across multiple datasets (Table 4). As
outlined earlier, the LSFA is designed to complement the SRA, which extracts local low-
level semantics from forgery images in parallel with the DINOv3 embedding layer. While
the SRA enriches the input with localized features, the LSFA injects these low-level cues
into the DINOv3 transformer by fusing them at the beginning of each stage.

The results indicate that using two LSFA modules achieves strong performance on FF++,
but underperforms on cross-dataset evaluations, particularly on DFDC. Increasing the num-
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. DeepFakes .

Figure 2: T-SNE features visualization on sub-datasets of FF++ separated by four types of
forgeries: F2F, FS, NT, and DF.

[ LSFA Modules | FF++ | Celeb-DF | DFD | DFDC |

2 99.36 87.88 81.18 61.38
3 99.36 86.38 84.03 64.41
6 99.22 89.72 84.32 64.89

Table 4: Ablation study on the number of LSFA modules and evaluation on different datasets.

ber to three LSFA modules provides the most favorable trade-off between accuracy and
complexity, yielding superior results on Celeb-DF (86.38%) and competitive gains on DFD
(84.03%) and DFDC (64.41%). In contrast, increasing to six LSFA modules slightly im-
proves generalization on Celeb-DF, but reduces performance on FF++ and DFDC, likely due
to overfitting and higher model complexity.

Based on these findings, the final architecture employs three LSFA modules, as this con-
figuration consistently demonstrates robust cross-dataset generalization while maintaining
manageable model complexity.

5 Conclusion

In this paper, we introduced LGSFNet, a robust and scalable deepfake detection framework
built on the DINOv3 architecture. To enhance cross-scale feature interaction, we integrated
the Spatial Resolution Adaptor (SRA) and LSFA modules, enabling efficient fusion of low-
level forgery semantics with high-level features across network stages. Extensive evaluations
on multiple benchmarks demonstrate that LGSFNet achieves state-of-the-art performance on
FF++, Celeb-DF, DFD, and DFDC, while requiring only 20% trainable parameters. These
results highlight the effectiveness and practicality of our approach for real-world deploy-
ment. Future work will explore extending LGSFNet to detect multi-modal forgeries, such as
audio-visual deepfakes and cross-domain manipulations.
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