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Abstract
The threats posed by AI-generated media, particularly deepfakes, are now raising

significant challenges for multimedia forensics, misinformation detection, and biomet-
ric system resulting in erosion of public trust in the legal system, significant increase in
frauds, and social engineering attacks. Although several forensic methods have been pro-
posed, they suffer from three critical gaps: (i) use of non-standardized benchmarks with
GAN- or diffusion-generated images, (ii) inconsistent training protocols (e.g., scratch,
frozen, fine-tuning), and (iii) limited evaluation metrics that fail to capture generalization
and explainability. These limitations hinder fair comparison, obscure true robustness,
and restrict deployment in security-critical applications. This paper introduces a unified
benchmarking framework for systematic evaluation of forensic methods under controlled
and reproducible conditions. We benchmark ten SoTA forensic methods (scratch, frozen,
and fine-tuned) and seven publicly available datasets (GAN and diffusion) to perform
extensive and systematic evaluations. We evaluate performance using multiple metrics,
including accuracy, average precision, ROC-AUC, error rate, and class-wise sensitivity.
We also further analyze model interpretability using confidence curves and Grad-CAM
heatmaps. Our evaluations demonstrate substantial variability in generalization, with
certain methods exhibiting strong in-distribution performance but degraded cross-model
transferability. This study aims to guide the research community toward a deeper under-
standing of the strengths and limitations of current forensic approaches, and to inspire
the development of more robust, generalizable, and explainable solutions.

1 Introduction
In recent times, the proliferation of AI-generated content, particularly deepfakes [57], has
overwhelmed social media [1] and news platforms [7]. These deepfake contents are often
used to mislead audiences by fabricating events or impersonating individuals, thereby under-
mining public trust. Moreover, deepfakes have emerged as critical threats to society, espe-
cially in security-sensitive domains. For instance, they can compromise biometrics used for
face recognition and identification [55, 63], surveillance systems [26], and mislead percep-
tion modules in autonomous driving [18, 53]. Additionally, deepfakes pose significant risks
in the Internet of Things (IoT) ecosystem [9, 54] and remote authentication systems [52, 62],
where identity integrity is crucial. As the quality and realism of AI-generated content con-
tinue to improve, the ability to detect deepfake media has become increasingly challenging
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and making it imperative to develop robust and generalizable techniques.
Current statistics highlight the urgent need to verify deepfake content in domains such as
social media, journalism, finance, the legal system, and governance. Across industries, deep-
fake fraud has become alarmingly common. Nearly 92% of companies have reported finan-
cial losses due to deepfake scams [5]. On average, businesses lose approximately $450,000
per incident, with the financial sector bearing even heavier losses, averaging $600,000 per
organization, and in some cases exceeding $1 million [19]. In one notable incident, a Hong
Kong employee was tricked into transferring $25 million after fraudsters used a deepfake
video call to impersonate the company’s CFO [14].
Globally, deepfake-enabled fraud caused over $200 million in losses during the first quarter
of 2025 alone, indicating a rapidly escalating threat [16]. The cryptocurrency sector saw an
even more dramatic impact, with deepfake-related scams increasing by 456% between May
2024 and April 2025, culminating in more than $10.7 billion in damages in 2024 [43]. Mar-
ket projections suggest that generative AI-related fraud losses could rise to $40 billion by
2027, up from $12.3 billion in 2023 [15]. Beyond financial harm, the reputational damage
from deepfakes is equally concerning. Victims often suffer from long-term erosion of trust,
reputational fallout, and brand damage. In one instance, a fabricated image of an explosion
near the Pentagon, generated by AI, caused a temporary dip in the Dow Jones index, high-
lighting how deepfakes can disrupt public confidence and financial stability [42].
These statistics emphasize the urgent need for generalized forensic methods to detect deep-
fake content, thereby protecting individuals, institutions, and the public at large. Several
methods [17, 39, 51, 56, 60] have been developed using deep learning [60] and hybrid [39]
approaches to ensure media integrity. Some approaches [51, 60] incorporate preprocess-
ing and data augmentation techniques to enhance generalization, while others [39] leverage
SoTA foundation models for robust feature extraction to ensure better generalizability.
The major drawbacks of these methods [17, 39, 51, 60] are specific to datasets [60], genera-
tive models [17, 59], or training strategies [51, 58]. Although many benchmark datasets [51]
are now publicly available for evaluating a model’s effectiveness and generalizability, most
existing approaches [17, 39, 51, 60] consider only one or two datasets for evaluation, leav-
ing many others unexplored. Furthermore, these methods are not assessed within a unified
framework, which hinders the reproducibility of results and limits future research.
In this article, we conduct an empirical study of generalizable and explainable deepfake de-
tection. The major contributions are listed as follows:

• We propose a unified benchmarking framework that systematically evaluates the gen-
eralization capabilities of SoTA forensic methods across benchmark datasets, genera-
tive models, and training paradigms.

• We conduct an extensive empirical study involving ten SoTA detection methods (scratch,
frozen, and finetuned) and seven publicly available deepfake datasets (GAN and Dif-
fusion) that offer a comprehensive and reproducible evaluation setup.

• We incorporate explainability techniques (confidence, ROC curves, and GradCAM) to
interpret model predictions and highlight the decisions made by them.

• We provide critical insights into the strengths and limitations of current forensic meth-
ods and identify open challenges that aim to guide the development of more robust,
generalizable, and explainable deepfake detection methods.

2 Empirical Study Design
This section outlines the overall design of the empirical comparative study depicted in Fig-
ure 1, covering benchmark selection, evaluation protocols, and explainability techniques. We
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Figure 1: Overview of the empirical study: First, we perform benchmark selection, including
datasets, forensic, and explainability techniques. Next, we define evaluation protocols cov-
ering frozen, fine-tuned, and from-scratch models for AI-generated image detection. Finally,
we provide a comprehensive explanation based on confidence, ROC curves, and GradCAM.

Table 1: Summary of Benchmark Datasets Commonly Used in the Research Community
Name Year Generative Technique

ForenSyn [60] 2020
ProGAN [23], StyleGAN [24], BigGAN [4], CycleGAN [64], StarGAN [8], GauGAN [40],
StyleGAN2 [25], Deepfakes [46]

ForenSynthsCh [60] 2022 CRN [6], IMLE [30], SAN [11], SIDT [6], WFR [60]
Diffusion1KStep [51] 2023 Dalle [41], DDPM [22], Guided-Diffusion [12], Improved-Diffusion [37], Mid-Journey [51]

DIRE [61] 2024
ADM [12], DDPM [22], IDDPM [37], LDM [45], PNDM [32], SDV1 [45],
SDV2 [45], VQDiffusion [20]

GAN [51] 2024
AttGAN [21], BEGAN [3], CramerGAN [2], InfoMaxGAN [28],
MMDGAN [29], RelGAN [38], S3GAN [34], SNGAN [35], STGAN [33]

UClipiffusion [39] 2023
Dalle [41], Glide (50_27, 100_10, 100_27) [36], Guided [12],
LDM (100, 200, 200_cfg) [45]

MNW [44] 2025

Adobe, Adversarial, Amazon_v2, Aura_flow, Baidu, Bytedance_v3, Civitai_v6, Flux, Google,
Hunyuandit, Hypersd, Ideogram, Kandinsky, Krea_1, Kuaishou, Luma_photon, Lumina,
Meta_imagine, Midjourney, Nvidia_sana, Openai, Pixart_alpha_xl, Playgroundai, Recraft_v3,
Reve_ai, Stable, Ultrapixel, Wuerstchen

identified 31 forensic methods and 10 benchmark datasets. Among the 31 forensic methods,
we screened 25 and selected 19 based on venue, effectiveness, and novelty. We imple-
mented 14 forensic methods. Similarly, we identified 10 benchmark datasets and collected
7 of them based on accessibility and representation of recent generative models. Owing to
the limited generalization ability of the 4 implemented methods and their outdated nature,
we ultimately reported generalization and explainability results using 10 forensic methods
across 7 datasets, as listed in Table 1 and Table 2.
2.1 Datasets
This section provides an overview of SoTA benchmark datasets, including their names, re-
lease years, object categories, and generative techniques, as summarized in Table 1.
2.1.1 GAN-Based Datasets
The ForenSyn [60] dataset was introduced by Wang et al. to improve the generalization ca-
pability of generic deepfake detection. It comprises data from eight GAN sources, including
three conditional GANs [8, 40, 64], unconditional GANs [23, 24], and a deepfake face [46]
source. Most SoTA methods train their models on the ProGAN [23] training set. GAN [51]
contains data from 9 GAN sources with varying architectural properties. These data differ
from ForenSyn [60], which covers a diverse range of wild scenes. In ForenSyn [60], each
sub-dataset has a random number of real and deepfake samples, while in GAN [51], each
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Table 2: Summary of Benchmark Detection Methods Used in the Research Community
Name Year Strength Limitation

CNND [60] CVPR, 2020
Improved generalization by
careful data augmentation

Did not explore other types of generative
models such as diffusion

LGrad [49] CVPR, 2023
Extracted gradient features using
pretrained generative models

Limited to StyleGAN and ProGAN models
Did not explore any diffusion models

NPR [51] CVPR, 2024 Explored neighboring pixel-relationship Bias towards the deepfake class
UClip [39] CVPR, 2023 Does not require retraining of CLIP Limited generalization to recent generative models
RClip [10] CVPR, 2024 Requires less training data Limited to certain generative models
FatF [31] CVPR, 2024 Captures frequency domain artifacts Lacks generalization to recent unseen datasets
RINE [27] ECCV, 2024 Trainable importance estimator for encoder Evaluated on fewer datasets
UpConv [13] CVPR, 2020 Captured spectral features Comparatively less effective and less generalizable
FreqNet [50] AAAI, 2024 End-to-end frequency learning model Does not account for other image properties

C2PClip [48] AAAI, 2025
Caption generation and enhancement
Concept injection to finetune CLIP

Limited analysis of the captions results in incomplete
information

(a) (b) (c) (d) (e)
Figure 2: Intermediate representation: (a) Original, (b) LGrad (gradient) [49], (c) NPR [51],
(d) FreqNet (high-frequency) [50], and (e) UpConv(spectral) [13] .
sub-dataset comprises 2K real and 2K deepfake images.
2.1.2 Diffusion-based Datasets
DIRE [61] consists of 8 diffusion-generated deepfake samples. The real images are ran-
domly collected from ForenSyn [60] (LSUN [60] and ImageNet [47]) real classes. Diffu-
sion1kStep [51] is a diffusion-family dataset containing data from five diffusion sources.
All samples are generated using 1K diffusion steps. Among these, the Mid-Journey and
Dalle samples were collected from social platforms. UClipiffusion [39] is another diffusion
dataset, collected from UClip [39], encompassing four different diffusion models with vary-
ing configurations. Microsoft Northwestern Witness (MNW) [44] is a recent and diverse
dataset encompassing 43 diffusion models, with 250 samples generated for each model. The
dataset includes samples from wild scenes, faces, and real-world scenarios.
2.1.3 Other Generative Datasets
The ForenSynthsCh [60] dataset contains AI-generated images created using low-level vi-
sion and perceptual loss techniques, which are very challenging and often overlooked by
most SoTA methods, as they worked very poorly.
2.1.4 Detection Methods
This section introduces the SoTA forensic methods used in our analysis, as summarized in
Table 2, and presents their intermediate representations in Figure 2 to better illustrate the
underlying concepts.
2.1.5 Scratch Trained Models
We selected four scratch-trained models [13, 49, 50, 51] to evaluate the proposed bench-
mark, each representing a distinct design in AI-generated image detection. UpConv [13]
is a widely recognized approach that exploits spectral analysis to identify upsampling arti-
facts, effectively capturing intrinsic properties of both GAN- and diffusion-generated con-
tent. LGrad [49] is another influential method, which leverages a pretrained generative model
to extract gradient-based features, thereby capturing subtle textural and structural cues as-
sociated with deepfakes. The nearest pixel relationship (NPR) [51] method takes a spatial
perspective, focusing on the correlations among neighboring pixels to uncover artifacts intro-
duced during the upsampling process. Finally, FreqNet [50] represents a recent advancement
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Table 3: Performance evaluation on Diffusion1kStep [51] datasets (ACC/AP).
Dataset Scratch Models Frozen Models Fine-Tuned Models

UpConv [13] LGrad [49] NPR [51] FreqNet [50] UClip [39] RCLip [10] RINE [27] CNND [60] FatF [31] C2PClip [48]
Dalle 47.9/46.5 76.6/87.1 69.5/86.4 51.3/58.9 53.7/69.3 76.8/81.1 60.5/86.2 52.8/53.4 68.8/93.2 66.4/93.1
Ddpm 49.9/49.8 59.8/80.3 70.8/81.9 69.4/86.6 72.2/84.4 65.6/74.1 68.6/85.1 50.2/59.0 59.1/77.9 72.0/81.9
Guided-diffusion 57.6/68.3 68.5/74.8 64.3/77.6 80.3/90.2 77.5/94.5 70.0/80.1 82.2/97.7 56.4/67.7 81.8/95.7 74.4/94.6
Improved-diffusion 53.8/62.8 42.3/43.9 68.7/87.0 52.9/60.5 69.2/90.8 51.3/50.1 66.6/92.8 47.3/51.4 59.4/72.5 75.2/92.6
Midjourney 51.7/53.4 64.1/71.4 68.8/88.2 53.4/61.7 49.9/48.5 62.7/65.3 53.3/67.1 49.0/42.1 62.7/85.4 66.8/93.1
Avg. 52.2/56.1 62.3/71.5 68.4/84.2 61.5/71.6 64.5/77.5 65.3/70.2 66.2/85.8 51.1/54.7 66.4/84.9 70.9/91.0

in frequency-domain approaches, offering an end-to-end frequency-aware architecture capa-
ble of identifying nuanced spectral inconsistencies present in AI-generated images.
2.1.6 Frozen Models
Similar to scratch-trained models, we selected two frozen-based models [10, 39]. These two
methods used CLIP as a frozen model to extract features for deepfake detection. First, uni-
versal deepfake detection using CLIP (UClip) [39], in which the authors adopted a pretrained
CLIP model for AI-generated image detection without training CLIP. RClip [10] investigated
the effectiveness of sample size in generalizing detection with CLIP features, showing that
even 0.01K samples are sufficient to detect deepfake artifacts.
2.1.7 Fine-Tuned Models
This category of methods [63] fine-tunes pretrained models on AI-generated datasets to im-
prove generalization. Examples include CNND [60], RINE [27], FatF [31], and C2PClip [48]
. CNND [60] was the first to introduce a large-scale deepfake dataset, using a pretrained
ResNet (trained on ImageNet) fine-tuned on this dataset. RINE [27] employs a frozen CLIP
encoder with a trainable importance estimator to select key features for AI-generated im-
age detection. Similarly, FatFormer integrates a forgery-aware adapter to capture frequency
cues, while C2PClip [48] injects category-common prompts to enhance generalization.
3 Results
This section presents the experimental setups, performance evaluations and comparisons,
and explainability analyses conducted in the proposed empirical study.
3.1 Experimental Setting
We configured our pipeline to evaluate all selected methods under identical environmental
settings. We run all the experiments on a Linux 24.04 operating system with eight NVIDIA
RTX 6000 Ada Generation GPUs (49 GB of memory on each GPU). For each method, we
adopted the preprocessing, including load size, cropping, and normalization, reported in the
original papers. We reported ACC, AP, AUC, and EER for a fair assessment of the methods.
3.2 Performance Evaluation and Comparisons
We extensively evaluated the performance of ten forensic methods on seven benchmark
datasets, as reported in Tables 3-9. For the CNND [60] dataset, we split it into two cate-
gories because most methods tend to ignore the ForenSynthsCh [60] segments. This is be-
cause many SoTA methods fail to generalize on this dataset, resulting in poor performance.
Across most datasets, UpConv [13] underperforms, while C2PClip [48] consistently achieves
the highest accuracy, demonstrating strong generalization. All methods struggle on Diffu-
sion1kStep [51], whereas UDiffusion and GAN-based datasets are easier to detect, with
several models exceeding 90% accuracy. The best performance on Diffusion1kStep [51] is
achieved by C2PClip [48] (ACC/AP of 70.9%/91.0%), whereas the lowest results are re-
ported by CNND [60] (ACC/AP of 51.1%/54.7%). Methods like LGrad [49], RCLip [10],
and CNND [60] show intermediate performance across all datasets, as depicted in Figure 3.
Among all methods, NPR [51] achieves the highest average accuracy (91.1%) on the MNW [44]
dataset, whereas most other models perform substantially worse and face the difficulty of
generalizing across diverse generative sources. Notably, FreqNet [50] drops to only 1.6%
accuracy, despite its strong performance on other datasets, which highlights the challenges
of adapting to certain real-world or unseen data distributions.
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Table 4: Performance evaluation on DIRE [61] datasets (ACC/AP).
Dataset Scratch Models Frozen Models Fine-Tuned Models

UpConv [13] LGrad [49] NPR [51] FreqNet [50] UClip [39] RCLip [10] RINE [27] CNND [60] FatF [31] C2PClip [48]
Adm 56.1/65.0 83.8/94.3 68.8/80.8 66.7/85.2 67.9/86.3 81.6/96.4 69.7/92.5 58.0/74.8 70.7/93.7 68.8/95.3
Ddpm 55.1/33.6 81.2/92.4 67.2/97.2 90.3/99.1 80.7/96.4 72.1/69.2 80.7/96.8 62.9/64.3 67.2/78.9 73.5/76.2
Iddpm 46.9/46.1 63.3/84.9 71.8/94.3 60.1/92.9 73.4/96.7 69.7/82.2 75.2/97.9 50.4/74.9 69.3/96.3 80.7/94.9
Ldm 63.5/67.2 98.7/99.9 74.0/99.6 97.5/100.0 50.7/86.1 95.6/100.0 56.6/98.1 53.0/75.8 97.2/100.0 97.2/99.7
Pndm 52.4/53.6 67.8/94.2 73.2/85.9 85.0/99.3 86.2/99.1 95.5/99.8 83.8/99.0 50.9/76.6 99.2/100.0 84.2/97.2
Sdv1 42.0/74.2 83.2/97.5 82.4/94.9 93.8/99.6 52.8/90.8 68.0/96.8 78.0/98.8 39.1/78.0 61.6/97.0 78.9/99.2
Sdv2 61.6/67.1 96.7/99.8 74.0/98.9 70.7/96.5 53.3/85.0 46.2/36.2 57.4/89.9 52.2/72.9 84.4/98.7 66.7/94.8
Vqdiffusion 65.3/70.4 86.1/99.0 74.0/99.6 99.9/100.0 77.8/99.0 95.6/100.0 91.4/99.9 53.9/84.7 100.0/100.0 95.8/99.7
Avg. 55.4/59.6 82.6/95.3 73.2/93.9 83.0/96.6 67.9/92.4 78.0/85.1 74.1/96.6 52.6/75.2 81.2/95.6 80.7/94.6

Table 5: Performance evaluation on ForenSynths [60] datasets (ACC/AP).
Dataset Scratch Models Frozen Models Fine-Tuned Models

UpConv [13] LGrad [49] NPR [51] FreqNet [50] UClip [39] RCLip [10] RINE [27] CNND [60] FatF [31] C2PClip [48]
Biggan 67.3/81.9 74.5/78.3 58.4/65.2 91.2/96.2 95.1/99.3 80.4/95.6 99.6/99.9 70.2/84.5 99.5/100.0 99.1/100.0
Cyclegan 69.7/79.3 80.1/88.3 73.8/71.3 95.5/99.6 98.3/99.8 93.5/99.5 99.3/100.0 85.2/93.5 99.4/100.0 97.3/100.0
Gaugan 59.6/74.1 68.8/73.4 53.5/49.7 92.9/98.4 99.5/100.0 91.8/97.9 99.8/100.0 78.9/89.5 99.4/100.0 99.2/100.0
Progan 53.1/78.8 98.8/99.9 58.1/71.7 99.6/100.0 99.8/100.0 84.0/99.7 100.0/100.0 100.0/100.0 99.9/100.0 100.0/100.0
Stargan 92.8/100.0 95.7/99.8 63.5/99.0 84.3/99.3 95.7/99.4 61.4/98.8 99.5/100.0 91.7/98.1 99.7/100.0 99.6/100.0
Stylegan 60.1/74.7 92.6/99.3 65.4/84.6 91.2/99.8 84.9/97.6 84.9/94.0 88.9/99.4 87.1/99.6 97.1/99.8 96.4/99.5
Stylegan2 53.8/68.6 93.6/99.2 61.7/74.8 87.3/99.5 75.0/97.9 80.8/90.2 94.5/100.0 84.4/99.1 98.8/99.9 95.6/99.9
Deepfake 53.6/53.5 58.9/81.8 49.9/52.9 92.2/97.3 68.6/81.8 53.3/72.8 80.6/97.9 53.5/89.0 93.3/98.0 93.8/98.6
Avg. 63.8/76.4 82.9/90.0 60.5/71.2 91.8/98.8 89.6/97.0 78.7/93.6 95.3/99.7 81.4/94.2 98.4/99.7 97.6/99.7

Table 6: Performance evaluation on ForenSynthsCh [60] datasets (ACC/AP).
Dataset Scratch Models Frozen Models Fine-Tuned Models

UpConv [13] LGrad [49] NPR [51] FreqNet [50] UClip [39] RCLip [10] RINE [27] CNND [60] FatF [31] C2PClip [48]
CRN 52.5/60.1 51.2/64.7 48.8/45.5 53.7/74.8 56.6/96.6 61.3/83.1 89.3/97.3 86.3/98.2 69.5/99.8 93.3/99.9
IMLE 51.6/62.5 51.2/70.9 48.8/50.7 53.7/69.9 69.1/98.6 66.1/83.2 90.7/99.7 86.2/98.4 69.5/99.9 93.3/99.9
SAN 50.5/48.0 42.0/41.3 58.7/68.4 89.3/93.2 56.6/78.8 76.5/88.0 68.3/94.9 50.5/70.4 68.0/81.2 64.4/84.6
SITD 85.0/97.1 47.2/39.1 51.7/53.0 72.8/72.1 62.2/63.8 70.6/91.2 90.6/97.2 90.3/97.2 81.4/97.9 95.6/98.9
WFR 64.1/84.0 57.8/58.9 51.0/49.4 50.9/96.7 87.2/97.3 71.4/90.3 97.0/99.5 86.8/94.8 88.1/98.5 94.8/99.5
Avg. 60.7/70.3 49.9/55.0 51.8/53.4 64.1/81.3 66.3/87.0 69.1/87.2 87.2/97.7 80.0/91.8 75.3/95.5 88.3/96.6

Table 7: Performance evaluation on GAN [51] datasets (ACC/AP).
Dataset Scratch Models Frozen Models Fine-Tuned Models

UpConv [13] LGrad [49] NPR [51] FreqNet [50] UClip [39] RCLip [10] RINE [27] CNND [60] FatF [31] C2PClip [48]
Attgan 48.5/41.9 53.1/76.6 86.4/98.0 90.3/98.5 90.8/97.0 81.3/94.9 99.2/100.0 65.8/91.4 99.3/100.0 90.4/99.8
Began 48.9/47.9 51.0/70.4 55.2/78.7 65.4/99.3 89.3/96.3 99.9/100.0 97.9/99.9 69.7/91.9 99.9/100.0 94.8/100.0
Cramergan 73.5/84.4 50.9/59.1 73.4/92.7 99.6/100.0 90.7/99.3 68.0/90.0 97.0/99.9 91.9/99.1 98.4/100.0 98.4/100.0
Infomaxgan 42.2/42.2 53.9/82.1 74.4/92.6 63.2/95.0 88.5/96.9 68.0/90.2 96.5/99.6 62.5/86.7 98.4/100.0 98.4/100.0
Mmdgan 76.1/87.0 51.1/66.5 74.0/93.5 98.0/99.9 90.6/99.2 68.0/90.1 97.0/99.9 86.4/98.2 98.4/100.0 98.4/100.0
Relgan 93.7/98.2 74.5/95.6 88.1/99.9 99.9/100.0 93.4/98.0 80.1/98.8 99.4/100.0 88.8/98.9 99.5/100.0 92.0/99.8
S3gan 96.5/99.6 73.3/75.9 73.2/82.7 88.6/94.1 94.1/98.8 85.1/99.0 98.6/99.9 69.0/80.7 99.0/100.0 99.0/100.0
Sngan 65.5/73.3 52.3/82.5 57.8/64.4 51.2/84.7 88.6/96.8 67.9/81.7 96.7/99.7 60.8/86.6 98.3/99.9 98.4/99.9
Stgan 85.7/95.9 50.5/75.7 91.4/99.1 98.0/100.0 82.8/91.6 61.5/89.8 93.7/99.1 65.2/96.5 98.8/99.8 97.6/99.6
Avg. 70.1/74.5 56.7/76.1 74.9/89.1 83.8/96.8 89.9/97.1 75.5/92.7 97.3/99.8 73.3/92.2 98.9/100.0 96.4/99.9

Table 8: Performance evaluation on UClipiffusion [39] datasets (ACC/AP).
Dataset Scratch Models Frozen Models Fine-Tuned Models

UpConv [13] LGrad [49] NPR [51] FreqNet [50] UClip [39] RCLip [10] RINE [27] CNND [60] FatF [31] C2PClip [48]
Dalle 55.1/65.5 83.5/92.4 53.8/69.5 97.7/99.5 87.5/97.7 89.2/99.5 95.0/99.5 56.1/71.3 98.7/99.8 98.6/99.9
Glide_50_27 58.1/67.0 85.2/92.3 54.0/80.8 86.6/95.8 79.2/96.0 87.2/96.7 92.6/99.5 62.7/84.6 94.6/99.5 95.2/99.8
Glide_100_10 59.7/69.1 83.7/91.5 54.1/81.0 88.4/96.2 78.0/95.5 87.9/97.0 90.7/99.2 61.0/82.0 94.2/99.3 96.1/99.8
Glide_100_27 54.5/60.7 81.5/89.2 53.9/80.0 84.7/95.4 78.6/95.8 87.8/97.0 88.9/99.1 60.4/80.5 94.3/99.3 95.2/99.7
Guided 57.5/68.7 70.2/75.1 58.8/67.3 62.4/67.2 70.0/88.3 85.6/96.6 76.1/96.6 62.0/77.7 76.0/91.9 69.1/94.1
Ldm_100 49.5/54.9 86.4/93.7 54.4/82.7 97.0/99.9 95.2/99.3 89.5/99.9 98.7/99.9 55.1/72.5 98.6/99.9 99.3/100.0
Ldm_200_cfg 51.3/56.7 88.2/95.4 54.3/82.9 96.9/99.8 74.2/93.2 89.3/99.7 88.2/98.7 55.2/73.0 94.8/99.2 97.2/99.8
Ldm_200 49.0/54.2 86.1/93.7 54.4/82.6 96.9/99.8 94.5/99.4 89.5/99.9 98.3/99.9 53.9/71.1 98.6/99.8 99.2/100.0
Avg. 54.3/62.1 83.1/90.4 54.7/78.4 88.8/94.2 82.2/95.7 88.3/98.3 91.1/99.0 58.3/76.6 93.7/98.6 93.8/99.1

3.3 Explainability of Model Predictions
For a better explanation of model predictions, we visualized GradCAM, confidence, and
ROC curves, as depicted in Figures 4, 5, and 6. GradCAM highlights the regions that each
model focuses on to distinguish between real and fake samples. As shown in Figure 4, each
method focuses on different regions to determine whether a sample is real. For example,
LGrad [49], FreqNet [50], and C2PClip [48] primarily target the background, while others
attend to random regions when making their decisions.
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Table 9: Performance evaluation on MNW [44] datasets (ACC/AP).
Dataset Scratch Models Frozen Models Fine-Tuned Models

UpConv [13] LGrad [49] NPR [51] FreqNet [50] UClip [39] RCLip [10] RINE [27] CNND [60] FatF [31] C2PClip [48]
Adobe 41.6/– 56.5/– 97.6/– 1.2/– 28.9/– 4.7/– 38.5/– 3.1/– 16.7/– 31.3/–
Adversarial_images 15.2/– 23.6/– 89.2/– 2.4/– 10.4/– 5.2/– 8.8/– 1.2/– 6.4/– 6.4/–
Amazon_titan_v2 10.8/– 72.0/– 100.0/– 0.0/– 20.0/– 29.6/– 27.6/– 3.2/– 23.6/– 26.4/–
Aura_flow 18.4/– 56.8/– 100.0/– 0.8/– 2.4/– 4.8/– 3.6/– 0.0/– 12.0/– 47.2/–
Baidu 10.4/– 13.2/– 85.2/– 0.8/– 10.4/– 1.2/– 6.8/– 0.8/– 0.4/– 4.4/–
Bytedance 31.6/– 49.6/– 99.2/– 0.0/– 0.0/– 1.2/– 0.4/– 0.4/– 0.0/– 0.0/–
Civitai_v6 3.6/– 80.0/– 98.0/– 0.0/– 4.0/– 12.0/– 4.8/– 0.8/– 21.6/– 28.0/–
Flux 12.8/– 35.2/– 88.0/– 15.1/– 3.7/– 2.1/– 3.1/– 2.4/– 2.9/– 3.1/–
Google 5.8/– 13.8/– 70.8/– 2.2/– 4.8/– 1.4/– 1.0/– 2.0/– 0.0/– 0.2/–
Hunyuandit 32.0/– 1.6/– 94.0/– 0.0/– 7.2/– 1.2/– 4.4/– 0.8/– 0.4/– 11.2/–
Hypersd 19.6/– 3.6/– 68.0/– 0.6/– 3.2/– 0.0/– 0.8/– 1.4/– 0.0/– 3.4/–
Ideogram 6.8/– 78.4/– 98.0/– 0.4/– 2.0/– 0.0/– 2.0/– 4.0/– 14.8/– 1.2/–
Kandinsky 17.2/– 1.6/– 88.4/– 1.2/– 11.2/– 0.0/– 4.0/– 0.0/– 0.0/– 6.0/–
Krea_1 6.0/– 90.4/– 98.8/– 0.0/– 4.8/– 0.0/– 5.6/– 6.0/– 7.2/– 1.2/–
Kuaishou_kolors 8.0/– 2.8/– 85.2/– 1.6/– 3.2/– 0.4/– 0.8/– 0.4/– 0.0/– 9.6/–
Luma_photon 97.6/– 84.0/– 99.2/– 1.2/– 26.8/– 5.2/– 45.2/– 14.4/– 41.6/– 16.8/–
Lumina 20.4/– 82.4/– 99.2/– 0.4/– 15.6/– 13.2/– 30.4/– 8.4/– 27.6/– 10.8/–
Meta_imagine 4.0/– 15.2/– 94.0/– 1.2/– 14.8/– 2.8/– 12.0/– 5.6/– 0.0/– 12.4/–
Midjourney 30.4/– 30.8/– 78.9/– 0.8/– 5.7/– 0.0/– 8.8/– 10.9/– 6.1/– 7.3/–
Nvidia_sana 47.6/– 22.4/– 95.6/– 1.2/– 60.4/– 30.4/– 60.4/– 0.4/– 49.6/– 54.4/–
Openai 7.3/– 37.9/– 86.5/– 2.4/– 20.3/– 2.0/– 20.7/– 8.0/– 2.9/– 14.5/–
Pixart_alpha_xl 32.0/– 3.6/– 82.0/– 0.8/– 2.0/– 0.8/– 0.8/– 1.2/– 0.0/– 12.0/–
Playgroundai 22.0/– 38.8/– 80.2/– 0.0/– 6.2/– 1.0/– 9.2/– 3.2/– 27.4/– 10.2/–
Recraft_v3 46.0/– 66.0/– 93.6/– 0.0/– 12.4/– 0.4/– 7.2/– 0.0/– 6.8/– 1.6/–
Reve_ai 13.2/– 72.0/– 99.2/– 0.8/– 2.8/– 0.0/– 7.2/– 4.0/– 13.2/– 1.2/–
Stable_diffusion 14.2/– 41.1/– 89.6/– 2.0/– 14.3/– 9.2/– 13.7/– 3.9/– 17.1/– 17.2/–
Ultrapixel 11.2/– 84.0/– 100.0/– 5.6/– 4.0/– 0.0/– 4.0/– 44.4/– 38.8/– 0.8/–
Wuerstchen 8.4/– 4.0/– 93.6/– 1.2/– 22.4/– 1.2/– 30.4/– 5.6/– 0.8/– 17.2/–
Avg. 21.2/– 41.5/– 91.1/– 1.6/– 11.6/– 4.6/– 12.9/– 4.9/– 12.1/– 12.7/–

Figure 3: Summary of all forensic methods on all benchmark datasets.
In contrast, the confidence curve represents the prediction probabilities of each model for the
real and fake classes to make it clear how confident a model is in predicting real as real and
fake as fake. As shown in Figure 5, in most cases, NPR [51] is biased towards the fake class,
while UpConv [13] tends to favor the real class. Similar to the confidence curve, the ROC
curve illustrates the trade-off between the true positive rate and false positive rate across
different thresholds to provide a comprehensive view of each model’s discriminative ability.

4 Discussions and Future Research Directions
This section outlines the discussions and future research directions of our findings.
4.1 Discussions
Inconsistent experimental settings: While most methods employ the same training set,
variations in their basic experimental configurations lead to inconsistencies across SoTA
methods, thereby hindering the reproducibility of results reported in the paper.
Lack of generalization: Although most methods claim to generalize to unseen generative
models, they struggle with unseen samples, as shown in Tables 3–9, particularly for the
MNW [44] dataset in Table 9 while varying the generative models.
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(f) (g) (h) (i) (j)
Figure 4: GradCAM explanation: (a) Original, (b) LGrad [49], (c) NPR [51], (d) Fre-
qNet [50], (e) UClip [39], (f) RClip [10], (g) RINE [27], (h) CNND [60], (i) FatF [31],
and (j) C2PClip [48].

(a) (b) (c)

(d) (e) (f)
Figure 5: Confidence of fake prediction by each model on six datasets: (a) Adm, (b) Big-
GAN, (c) CRN, (d) Dalle, (e) Guided, and (f) StGAN.
Biases in decision-making: In many cases, the methods exhibit bias toward either the real
or deepfake class. As shown in Table 9, most methods fail to detect MNW [44] sam-
ples, whereas NPR [51] achieves 91% ACC. Our analysis of the confidence curve reveals
that NPR [51] is biased toward fakes, as shown in Figure 5, which enables it to detect the
MNW [44] dataset. In contrast, UpConv [13] is biased toward real class (Figure 5).
Restricted preprocessing: Most methods rely on predefined preprocessing pipelines tai-
lored to specific datasets; for instance, NPR [51], RINE [27], and FreqNet [50] omit crop-
ping for certain datasets, while applying it to others.
Vulnerability to AFs: A few studies [60] have evaluated robustness against conventional
AFs, such as noise and compression. However, none have considered AFs based on GANs [55],
diffusion models [61], or optimization-based anti-forensic (AF) attacks.
Lack of explainability: Most methods lack explainability of their prediction to provide in-
sight into model behavior to make it difficult to understand why a particular decision was
made and limiting trust, accountability, and the ability to improve the model effectively.
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(a) (b) (c)

(d) (e) (f)
Figure 6: ROC curve of each model corresponding to prediction confidence: (a) Adm, (b)
BigGAN, (c) CRN, (d) Dalle, (e) Guided, and (f) StGAN.

4.2 Future Research Directions
Standardized framework: Our findings suggest developing unified training, preprocessing,
and evaluation protocols to ensure fair comparisons and reproducibility of the results.
Improved generalization: To improve generalization to GANs and diffusion, our study sug-
gests domain-agnostic features using meta-learning or multi-domain training.
Bias reduction: To better generalize across real and fake classes, our framework recom-
mends balanced objectives and debiasing techniques to avoid skew toward one class.
Preprocessing robustness: Additionally, the experimental results encourage building mod-
els that work reliably across varied or minimal preprocessing and AF conditions.
Explainability and trust: Future research should focus on enhancing model interpretability
through explainable AI techniques, such as attention visualization, causal reasoning, rule-
based representations, and large language model–driven report generation, to improve trust
and usability in real-world forensic applications.

5 Conclusions
In this study, we evaluated SoTA forensic methods under unified configurations across multi-
ple benchmark datasets to reveal their strengths and limitations. Our empirical analysis high-
lighted key challenges, including inconsistent experimental settings, limited generalization
to unseen generative models, biases in decision-making, and dependence on dataset-specific
preprocessing. By systematically benchmarking ten SoTA methods across seven datasets,
we provided insights into their generalization and applicability in real-world scenarios.
Furthermore, we proposed future research directions, including the development of stan-
dardized frameworks, improved generalization through domain-agnostic feature learning,
bias mitigation strategies, and preprocessing-robust model design. Overall, this study serves
as a comprehensive guide for the research community to inspire the development of more
robust, generalizable, and explainable approaches for detecting AI-generated media. [The
code, model weights, and datasets will be released upon acceptance of the paper.]
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