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Abstract

Accurate and efficient classification of brain tumors from Magnetic Resonance Imag-
ing (MRI) is essential for timely diagnosis and treatment planning. Traditional methods
often rely on hand-crafted features or vision-only deep learning models, which may not
fully utilize the rich contextual information found in biomedical images. This work pro-
poses a systematic hybrid framework for brain tumor classification that combines large
Vision-Language Models (VLMs) with a ResNet backbone. Our goal is to enhance clas-
sification accuracy and reduce the diagnostic workload for radiologists. We tackle the
challenge of multimodal information fusion by introducing a weighted concatenation
mechanism to effectively merge features extracted from the VLM and the ResNet archi-
tecture. Additionally, we conducted initial zero-shot learning evaluations using promi-
nent biomedical VLMs, BiomedCLIP and UniMedCLIP, to assess their inherent capa-
bilities in medical image understanding without fine-tuning. This preliminary analysis
helped inform the integration strategy for our proposed classification framework. Eval-
uated across six publicly available brain MRI datasets, our framework helps improve
the limitations of zero-shot classification in medical vision-language models by syner-
gistically combining CNN spatial features with semantic embeddings. This empirical
benchmarking study enhances classification performance and has significant potential
for streamlining the diagnostic workflow, ultimately easing the burden on medical pro-
fessionals. One of the key goals of this research is to improve the zero-shot classification
capability of medical vision-language models by leveraging spatial features from CNNs,
thereby overcoming limitations seen in standalone zero-shot VLMs.

1 Introduction
Brain tumors are among the most critical and life-threatening neurological disorders, capable
of impairing essential brain functions [27] depending on their type and anatomical location.
Early and accurate diagnosis is vital, as it directly influences treatment planning, progno-
sis, and patient outcomes. Magnetic Resonance Imaging (MRI) remains the gold standard
for brain tumor detection due to its superior spatial resolution and the ability to capture
multicontrast tissue characteristics without the risks of ionizing radiation. However, MRI
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interpretation depends highly on radiological expertise and is subject to variability between
readers, especially in complex or borderline cases.

Recent advances in artificial intelligence (AI) have introduced scalable and objective
tools for medical image analysis. Convolutional Neural Networks (CNNs), such as ResNet [11],
have shown strong performance in extracting discriminative spatial features directly from
raw MRI data [15]. More recently, Vision Transformers (ViTs) [9] have been explored for
brain tumor classification, leveraging self-attention mechanisms to capture global contex-
tual information in MRI scans [24]. However, their ability to capture a higher-level seman-
tic context remains limited. On the other hand, vision-language models (VLMs), partic-
ularly domain-specialized variants such as BioMedCLIP [30] and UniMedCLIP [16], have
emerged as powerful multimodal learners trained on large-scale biomedical image-text pairs.
These models align visual content with clinical semantics, enabling zero-shot classification
and more generalizable image interpretation without extensive retraining [29]. Despite this
promise, their effectiveness in domain-specific tasks such as brain tumor classification re-
mains limited, primarily due to a lack of fine-tuning on brain MRI datasets and insufficient
spatial granularity.

To address these limitations, we propose a hybrid framework [1, 2] that effectively com-
bines the strengths of CNNs and VLMs for robust brain tumor classification. We begin with
a zero-shot evaluation of state-of-the-art VLMs, including LLaVA [18], UniMedCLIP [16],
BioMedCLIP [30], and ChatGPT [5], which reveals their shortcomings in specialized neu-
roimaging tasks due to limited domain-specific fine-tuning. Building on these insights, we
introduce a novel weighted feature fusion strategy that integrates spatial embeddings from
ResNet-50 with semantically rich embeddings from BioMedCLIP. The fusion weights are
derived from model performance metrics, ensuring interpretable and data-driven integration
of complementary features. The resulting fused representations are then classified using
machine learning models such as support vector machine [12], [20], decision tree classifier
[22], and passive-aggressive classifier [8], yielding substantial performance gains over zero-
shot of VLMs. This demonstrates the effectiveness of combining spatially grounded CNN
features with semantically enriched VLM embeddings, improving generalizability and diag-
nostic accuracy. Importantly, our approach addresses the inherent limitations of zero-shot
VLMs in brain tumor classification and highlights the potential of hybrid architectures to
advance scalable and clinically relevant decision support systems in neuro-oncology.

2 Related Work
The rapid evolution of foundational models profoundly reshapes medical imaging, particu-
larly for tasks like brain tumor classification, by offering robust generalization and zero-shot
capabilities to address data scarcity [4, 25]. Recent advancements include adapting generalist
vision models such as the Segment Anything Model (SAM) [17] for medical contexts, lead-
ing to specialized derivatives like MedicoSAM for image segmentation [3], and developing
domain-specific foundational models exemplified by CheXFound for chest X-ray analysis
[28]. Furthermore, the rapidly evolving field of Vision-Language Models (VLMs) repre-
sents a significant advancement, learning joint visual and textual representations to facilitate
tasks such as zero-shot classification by aligning image features with text-based prompts.
Prominent examples in this domain include CheXzero [23], BiomedCLIP, and UniMed-
CLIP, which are specifically adapted for biomedical image-text pairs. Moreover, medical
VLMs such as MedCLIP [26] have reported strong performance on multimodal tasks, but
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their application to neuroimaging remains underexplored. Unlike these, our work focuses on
fusing domain-specialized BioMedCLIP embeddings with CNN spatial features for brain tu-
mor MRI classification. Concurrently, broader multimodal models like LLaVA and special-
ized Large Language Models (LLMs) such as BioGPT [19] and general-purpose models like
ChatGPT [5] have demonstrated powerful capabilities in generating and interpreting biomed-
ical text or visual-language outputs. While these foundational models offer robust semantic
understanding and remarkable generalization across various medical tasks, their direct ap-
plication to highly specialized tasks such as brain tumor classification from high-resolution
MRI data presents unique challenges. These include difficulties in capturing detailed spatial
information and adapting models trained on general data to complex anatomical structures.
Addressing these complexities, particularly in ensuring robust visual grounding and spatial
accuracy for direct image analysis, remains a crucial area of ongoing investigation.

3 Proposed Algorithm for Brain Tumor Detection
We performed zero-shot classification to evaluate vision-language models (VLMs) capabil-
ity in tumor detection. The models were used directly without fine-tuning or modifications,
leveraging their multimodal pretraining on large-scale data. Some were general-purpose
(e.g., LLaVA, ChatGPT), while others were domain-specific (e.g., BioMedCLIP, UniMed-
CLIP), trained on medical images and text. After observing the promising performance of
BioMedCLIP and UniMedCLIP, we sought to make the approach more adaptable to our task
by designing a hybrid pipeline focused on the vision-only component. This strategy avoids
computationally expensive fine-tuning, typically requiring large-scale labelled data and sig-
nificant resources.
We develop a hybrid deep learning framework that leverages spatial and semantic feature
representations to address the limitations of zero-shot classification using vision-language
models (VLMs) for brain tumor detection. The methodology includes dataset curation, fea-
ture extraction and fusion, and final classification. Several CNN backbones are explored,
and ResNet-50 and ViT-L/16 are selected as spatial extractors, while BioMedCLIP and
UniMedCLIP serve as vision-language models for semantic understanding. BioMedCLIP
is pretrained on approximately 15M biomedical image–text pairs, capturing radiology-style
descriptions and medical terminology. This domain-specific alignment is expected to aid
MRI interpretation compared to general-purpose CLIP variants that lack medical semantics.
All feature extractions are performed zero-shot to ensure generalization, without fine-tuning
on the downstream task. The architecture incorporates three fusion strategies:

• Concatenation of embeddings – features from CNNs and VLMs are directly con-
catenated into a joint representation.

• Score averaging from independent classifiers – prediction scores from separate clas-
sifiers are averaged to obtain the final decision.

• Weighted fusion using validation precision scores – classifier outputs are combined
with learned weights based on validation performance.
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Figure 1: Proposed VLM-CNN hybrid model for brain tumor classification. The pipeline in-
tegrates spatial features from ResNet-50 and semantic features from BioMedCLIP, followed
by weighted fusion and traditional classification.

Let fresnet ∈ Rd1 and fclip ∈ Rd2 denote the feature embeddings extracted from ResNet-
50 and BioMedCLIP, respectively. We define a weight vector w = [w1,w2] and compute
normalized fusion weights as:

αi =
ewi

ew1 + ew2
, i = 1,2 (1)

The fused feature representation is obtained by concatenating the weighted embeddings:

ffused =
[

α1 · fresnet ∥ α2 · fclip
]
∈ Rd1+d2 (2)

where ∥ denotes concatenation along the feature dimension.
The fused representation ffused is then used for classification with a traditional machine

learning model, such as an SVM:

ŷ = Classifier(ffused), Classifier ∈ {SVM, Logistic Regression, Passive Aggressive, etc.}
(3)

The fused feature ffused is directly used as input to a traditional machine learning classi-
fier. This decoupling from end-to-end neural training enhances interpretability and mitigates
overfitting, though it may limit the model’s capacity to learn more complex joint represen-
tations. The empirically determined optimal weights are wresnet = 0.47 and wbiomed = 0.53,
based on validation accuracy. After fusion, the final classification is performed using in-
terpretable traditional classifiers such as SVM, Logistic Regression, Passive Aggressive, and
SGD, with the best-performing model selected. Although weighted fusion is straightforward,
we adopt it for its interpretability and reduced risk of overfitting.

The proposed Hybrid CNN-VLM Classifier integrates spatial and semantic representa-
tions for robust brain tumor classification. As illustrated in Figure 1 and the pseudocode of
Algorithm 1, MRI images are first preprocessed through resizing and normalization, after
which spatial features are extracted using ResNet-50 and semantic embeddings are obtained
from BioMedCLIP. These complementary features are fused via a weighted concatenation
mechanism, where modality-specific weights are normalized to ensure balanced contribu-
tions. The fused representation is then directly used for classification with a traditional
machine learning model such as a support vector machine (SVM). This modular architecture
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Algorithm 1 Proposed Hybrid (VLM + CNN) Classifier for Brain Tumor

Require: Input: MRI image x
Ensure: Output: Label y ∈ {Tumor,Non-Tumor}

1. Preprocess x (resize, normalize)
2. fResNet← ResNet50(x)
3. fBioMed← BioMedCLIP(x)
4. Compute fusion weights: α1,α2
5. ffused← [α1 · fResNet ∥ α2 · fBioMed ]
6. y← Classifier( ffused)
7. return y

leverages the strengths of CNN-driven spatial detail and VLM-derived semantic context to
improve diagnostic accuracy, while maintaining flexibility to integrate additional modalities
(e.g., clinical metadata) and supporting transparent decision-making, an essential require-
ment in medical imaging applications.

3.1 Tumor Classification Results and Analysis
We construct a large-scale dataset by aggregating six publicly available brain MRI reposito-
ries:

• The Cancer Genome Atlas Low Grade Glioma Collection [21]

• Brain Tumor Classification (MRI) [6]

• Brain Tumor Image Dataset [7]

• MRI Braintumor Glioma Dataset[14]

• Tumour Classification Images [13]

• Brain Cancer Detection MRI Images [10]

All six datasets are provided in standard image formats (JPEG/PNG) with consistent
dimensions and orientation, pre-aligned for classification tasks by the original providers.
While the datasets have been somewhat standardized, potential label heterogeneity and batch
effects may remain due to their diverse sources. Minimal preprocessing, such as resizing and
format conversion, was applied. Minimal preprocessing, such as resizing and PNG conver-
sion, enables effective embedding extraction for zero-shot and fusion-based models. We
uniformly resize all MRI images to ensure compatibility across sources and convert them
into PNG format. No further preprocessing, such as intensity normalization, skull-stripping,
or spatial re-alignment, is necessary. Label harmonization maps all tumor subtypes (gliomas,
meningiomas, pituitary tumors, etc.) into a single Tumor class. At the same time, non-tumor
scans are assigned to the Non-Tumor class, yielding a binary classification setup. The final
dataset is balanced, with the training set containing 5,931 tumor and 5,587 non-tumor im-
ages, the test set containing 5,143 tumor and 5,056 non-tumor images from which only 4000
are used to test the model, and a separate validation set used for model selection. This split
allows us to tune model fusion weights on the validation set while evaluating zero-shot and
hybrid CNN+VLM performance on a fully held-out test set, ensuring unbiased assessment.
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This streamlined approach simplifies the workflow without compromising performance, as
binary classification (tumor vs. non-tumor) is relatively robust to residual appearance vari-
ation, allowing our hybrid CNN+VLM framework to generalize effectively with minimal
preprocessing overhead.

We conduct multiple experiments to arrive at our conclusions, comprising two main com-
ponents: evaluating the zero-shot performance of Vision-Language Models (VLMs) and as-
sessing the supervised performance of our proposed hybrid CNN-VLM fusion pipeline. All
experiments are conducted on a workstation with an Intel Core i7-14700 CPU and NVIDIA
GeForce RTX 4070 Ti GPU. Our fusion framework is implemented in PyTorch 2.6.0 with
CUDA 11.8. All experiments use the Adam optimizer with a learning rate of 1×10−3, batch
size of 64, and 50 training epochs. A validation split comprising 20% of the available data is
used to estimate fusion weights, which are then fixed for final training and evaluation. The
fused representations are subsequently used to train an SVM classifier, and performance is
reported on the held-out test set.

3.2 Zero-shot Analysis
We evaluate four vision-language models to classify brain tumors in a zero-shot setting:
BioMedCLIP, UniMedCLIP, LLaVA, and ChatGPT. In zero-shot inference, no model param-
eters are fine-tuned; instead, we directly exploit their pretrained vision–language alignment.
For CLIP-based models (BioMedCLIP, UniMedCLIP), tumor classification is performed by
computing cosine similarity between MRI image embeddings and text prompts describing
tumor classes (e.g., “MRI of a brain with tumor” vs. “MRI of a normal brain”). For gen-
erative models (ChatGPT, LLaVA), we provide descriptive diagnostic prompts and interpret
their text-based predictions. Accuracy for each model is computed as the ratio of correctly
predicted cases (true positives + true negatives) to the total number of test samples. As shown
in Table 1, BioMedCLIP delivers the most balanced performance, particularly on high-grade
tumors. UniMedCLIP is highly sensitive to tumors but often misclassifies normal cases,
whereas ChatGPT and LLaVA perform inconsistently due to their lack of domain-specific
visual grounding. These results highlight the limitations of zero-shot models and the need
for a supervised hybrid approach.

Table 1: Zero-shot performance of VLMs on the test MRI dataset.

Model Overall Acc. Non-tumor (0) Tumor (1)
BioMedCLIP 62.05% 66.71% 57.66%
UniMedCLIP 48.92% 1.07% 91.81%
ChatGPT 51.00% 32.0% 70.0%
LLaVA 50.43% 28.0% 72.8%

BioMedCLIP, while the most reliable among evaluated models, achieves moderate accu-
racy ( 62.05%) and exhibits room for improvement. The zero-shot VLM performances for
specialized neuroimaging tasks remain limited, motivating our hybrid approach. UniMed-
CLIP, while highly tumor-sensitive, struggles with non-tumor class detection, suggesting
bias. ChatGPT and LLaVA, lacking domain-specific visual grounding and confidence out-
puts, produce inconsistent results with higher false positives, especially in subtle cases.
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Table 2: Model-specific caption prompts for output generation.

Model Caption
BioMedCLIP(Caption classes) This brain MRI shows a tumor.

This brain MRI is normal without a tumor.
UniMedCLIP(Caption classes) Brain MRI scan with tumor.

Brain MRI scan without tumor.
LLaVA Are these healthy scans? Give an answer in 1 word

Can you detect any abnormality in this MRI scan?
ChatGPT Can you detect any abnormality in the provided image?

Is there a tumor present in this brain MRI scan?

Table 2 presents examples of caption classes provided to the models. These are not
an exhaustive set of captions used, but illustrative samples to demonstrate that the model’s
output varies depending on the chosen caption formulation.

3.3 Results of the Hybrid Model

This section evaluates our hybrid classification framework that integrates convolutional and
vision-language models. We test various model pairings and fusion strategies, demonstrating
that the final combination of ResNet-50 and BioMedCLIP with weighted fusion achieves the
best performance.

To address the limitations of zero-shot classification, we design a supervised pipeline
that combines spatial features from ResNet-50 with semantic features from BioMedCLIP.
Features from both models are fused using three strategies: (i) feature concatenation, (ii)
score averaging, and (iii) weighted fusion based on validation precision. We conduct com-
prehensive experiments with different model pairs, including ViT, ResNet, UniMedCLIP,
and BioMedCLIP. As shown in Table 3, the ResNet-50 + BioMedCLIP combination consis-
tently outperforms others across all fusion strategies. Notably, the weighted fusion approach
with this pair achieves the highest validation accuracy of 89.3%, demonstrating its effective-
ness in combining spatial and semantic modalities. We assess whether our fusion framework
leads to tangible improvements over zero-shot VLM baselines, thus addressing critical gaps
in medical image understanding.

The performance of the proposed ResNet + BioMedCLIP weighted fusion approach is
evaluated using the SVM classifier. The model achieves an overall accuracy of 89.3% and an
F1 Score of 89.3%. Sensitivity, which measures the proportion of tumor scans correctly iden-
tified, is 88.9%, while specificity, reflecting the proportion of non-tumor scans correctly clas-
sified, is 89.7%. The ROC-AUC, representing the model’s ability to discriminate between
tumor and non-tumor classes across varying thresholds, is 89.3%. These results demonstrate
that the fused feature representation provides robust and balanced performance across both
classes, highlighting the effectiveness of the hybrid model.

To further validate the model’s effectiveness, we visualise the fused feature space using
a confusion matrix and a t-SNE plot, as shown in Figure 2. The confusion matrix illustrates
balanced classification between tumor and non-tumor categories, while the t-SNE projection
confirms clear class separation, highlighting the discriminative strength of the learned em-
beddings. Together with the quantitative results, these visualizations support the robustness
and interpretability of our hybrid ResNet-50 + BioMedCLIP model.
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Table 3: Validation accuracy (%) and F1-score (%) for different model combinations and
fusion strategies. The best performance is achieved using ResNet + BioMedCLIP with
weighted fusion.

Model Pair Fusion Strategy Accuracy (%) F1-score (%)
ResNet + UniMedCLIP Concatenation 77.0 76.0
ResNet + UniMedCLIP Score Averaging 67.1 67.0
ResNet + UniMedCLIP Weighted Fusion 88.3 88.3
ViT + UniMedCLIP Concatenation 75.1 74.0
ViT + UniMedCLIP Score Averaging 70.9 71.0
ViT + UniMedCLIP Weighted Fusion 88.0 88.3
ViT + BioMedCLIP Concatenation 82.0 82.0
ViT + BioMedCLIP Score Averaging 83.4 83.0
ViT + BioMedCLIP Weighted Fusion 82.2 82.1
ResNet + BioMedCLIP Concatenation 87.3 87.0
ResNet + BioMedCLIP Score Averaging 83.3 83.0
ResNet + BioMedCLIP Weighted Fusion 89.3 89.3

(a) Confusion matrix (b) t-SNE plot of fused features

Figure 2: Visualisation of the proposed hybrid model performance.

3.4 Discussion

Our experiments confirm that the proposed hybrid pipeline substantially boosts zero-shot
classification capability, demonstrating its value for medical tasks where labelled data is lim-
ited. Our findings highlight the potential and limitations of vision-language models (VLMs)
in medical imaging. Although BioMedCLIP and UniMedCLIP demonstrate promise in zero-
shot tumour classification, they struggle with class imbalance and lack fine-grained spatial
understanding, most notably UniMedCLIP, which heavily favours tumour cases at the cost
of normal detection. General-purpose models like ChatGPT and LLaVA underperform due
to weak domain-specific visual grounding and over-reliance on language priors. These chal-
lenges motivate our hybrid approach, where combining ResNet-50’s spatial features with
BioMedCLIP’s semantic embeddings provides a more balanced representation. The supe-
rior performance of weighted fusion supports the view that modular integration of comple-
mentary models offers a more scalable and interpretable alternative to monolithic, end-to-
end systems in medical AI. However, improving generalizability, clinical interpretability,
and robustness to imaging variability remains an open challenge. While binary tumour vs.
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non-tumour classification provides proof-of-concept, it is less clinically useful than tumour
grading, subtype differentiation, or segmentation required in practice.

3.5 Limitations
This study demonstrates strong binary classification performance, but merging diverse tu-
mour subtypes into a single class limits clinical applicability. While our softmax-normalised
fusion weights provide interpretable modality contributions, they remain fixed and may re-
strict the capacity to learn richer joint representations.

4 Conclusion
We presented a hybrid deep learning framework for binary brain tumor classification using
MRI, combining the spatial capabilities of CNNs with the semantic power of vision lan-
guage models. Zero-shot analysis revealed the limitations of standalone VLMs, particularly
in medical imaging contexts lacking domain-specific fine-tuning. Our proposed architecture,
which fuses ResNet-50 and BioMedCLIP features via a weighted strategy, outperforms in-
dividual models and simpler fusion methods. These results demonstrate the effectiveness of
combining complementary representations for robust medical image analysis. In the future,
we aim to advance zero-shot brain tumor image analysis and ensure no deadly cases are left
behind for diagnosis.
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