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Abstract

Cardiovascular diseases (CVD) are one of the leading causes of death worldwide,
so early detection using advanced imaging techniques such as MRI is critical for ad-
ministering effective treatment. However, segmentation of heart substructures remains
challenging due to limited annotated data, image complexity, and variability across MRI
scanners, protocols, patient positioning, and inter-radiologist variability. Manual anno-
tation is time-consuming and prone to inconsistency. In this paper, we introduce a new
3D data augmentation method that creates extra slice views from 3D MRI scans, along
with their corresponding ground truth masks. We fuse these augmented views with the
original training data to enhance the dataset by providing multiple perspectives of heart
substructures in medically relevant directions. This multi-view slice augmentation ap-
proach directly improves 2D and 3D segmentation performance by exposing the model
to diverse anatomical viewpoints during training. The method improves model gener-
alization across imaging variations and enhances segmentation accuracy. To support
this claim, we test our method on a completely unseen dataset to test effectiveness of the
augmentation. We demonstrate that our method outperforms standard augmentation tech-
niques and generates more clinically relevant segmentation masks on completely unseen
data. Thus it reduces manual segmentation time, helping radiologists handle new data
more efficiently. Experiments on publicly available datasets confirm the effectiveness of
our method with significant improvement in blind testing across multiple datasets.

Clinical Relevance: Accurate cardiac segmentation is essential for diagnosing and treat-
ing cardiovascular diseases. Our method enhances 2D segmentation by generating clinically

© 2025. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 BANERJEE ET AL.: MULTI-VIEW RESLICED IMAGE FUSION FOR ENHANCED..

#
8. 8
6

Example slices from
re-sliced il /mage volume

Extracting parallel image

Slices in new directions
¢ ‘
Conversion

Re-slicing
to voxel planes
volume

.

Extract/ng parallel label

Source stack of  gjices in new directions

uni-directional

2-D slices Example slices from
re-sliced label volume

‘

ﬂ’!‘ ”PI

! Kl
, 6
6 6
4 2 0

Figure 1: Generating stack of slices for images and labels in new directions from the original uni-directional
stack. No. of slices in each stack shown here after voxel conversion do not reflect the actual number. New views
from left to right are: 2-ch SAX, 2-ch LAX, 3-ch, 4-ch, LVOT.

relevant views like the 2-chamber short-axis (2-ch SAX), 2-chamber long-axis (2-ch LAX)
etc. These views capture vital anatomical details needed to evaluate ventricular function,
valvular integrity, and overall heart anatomy. Improved segmentation accuracy reduces the
manual effort required by radiologists. This approach streamlines radiology workflows and
supports digital twin modeling for personalized treatment. It also enables early and reliable
detection of cardiac abnormalities. Ultimately, our method contributes to improved patient
outcomes and more efficient clinical practices.

1 Introduction

Cardiovascular diseases (CVD) are one of the leading causes of morbidity and mortality
worldwide, placing a significant burden on global healthcare systems. Timely diagnosis and
accurate treatment planning are essential to reduce CVD-related complications and improve
patient outcomes. One key aspect of personalized treatment is accurate segmentation of
heart substructures, including Left Ventricle (LV), Right Ventricle (RV), Left Atrium (LA),
Right Atrium (RA), Aorta, Myocardium (Myo), and Pulmonary Artery (PA). This process,
known as whole-heart segmentation (WHS) from patient specific data, is crucial for gen-
erating personalized digital twin model of a patient’s heart, which can assist pre-surgical
planning, intervention planning, procedure simulation, and disease progression evaluation
[2, 14, 19, 25, 33, 35].

However, accurate segmentation of heart substructures from medical imaging remains a
significant challenge. A major limitation is scarcity of annotated data, as manual segmenta-
tion is both time-consuming and resource-intensive. High-quality, annotated datasets require
expert involvement, and such datasets are often insufficient in size or diversity, limiting the
generalizability of segmentation models. Furthermore, variability in medical imaging, in-
cluding differences in MRI scanners, acquisition protocols, and patient positioning, can lead
to inconsistencies in image quality, orientation, and resolution [7, 21, 32]. These variations
are particularly challenging for deep learning (DL) models, which require large, diverse
datasets to generalize effectively across different conditions. Studies such as [18] and [31]
highlight how variability between different MRI machines and protocols can lead to incon-
sistent model performance and reduced segmentation accuracy.
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To overcome the issue of data scarcity and variability, deep learning-based data aug-
mentation techniques have been widely explored. These methods typically rely on genera-
tive models, such as GANs (Generative Adversarial Networks) or other sophisticated tech-
niques, to synthesize new data samples from existing datasets [6, 8, 10, 15]. While these
methods have shown promise in expanding datasets, they require extensive computational
resources and time-consuming training processes. Additionally, the synthetic data gener-
ated by these models may not always capture the full range of realistic variations present
in clinical datasets, limiting their utility in real-world applications. Common augmentation
techniques, such as image rotation, flipping, scaling, zooming and intensity adjustments, are
also employed to expand the dataset artificially. However, these methods fail to address more
complex variations, such as differences in scan orientation or slice position, which are criti-
cal for accurate heart segmentation [23, 27, 34]. Recent works, such as those by [5] and [16],
propose more sophisticated augmentation strategies that address these challenges, but they
still rely on deep learning models, which may not always be feasible in resource-constrained
settings.

In this work, we introduce an innovative approach to data augmentation that can be ap-
plied to most 3D structural data like CT, MRI, PET, etc. Our proposed augmentation tech-
nique helps in improving the accuracy of segmentation and classification models of DL.
From an existing 3D MRI volume, we derive several medically relevant views that capture
key anatomical structures of the heart, including its chambers, major arteries, and veins.
We then fuse these newly generated images with the original dataset through concatenation,
creating an enriched training set that provides comprehensive multi-view information for
deep learning models. Specifically, we generate the following views: i) 2-chamber short-
axis (2-ch SAX) view provides a cross-sectional image of the left ventricle. ii) 2-chamber
long-axis (2-ch LAX) view extends the perspective to include the left atrium. iii) 3-chamber
(3-ch) view incorporating the aortic valve, providing insight into both the myocardial and the
valvular regions. iv) 4-chamber (4-ch) view simultaneously displaying all four heart cham-
bers, which is essential to evaluate the overall size and function of the chamber and v) Left
ventricular outflow tract (LVOT) view focusing on the left ventricular outflow tract and aor-
tic valve to assess blood flow dynamics and detect potential obstructions. This enriched set
of views provides the segmentation model with more comprehensive information about the
structure of the heart. The view generation is shown in Fig 1, which is detailed in the method-
ology section. Notably, our method creates corresponding labeled images for these new
slices and fuses them with the original dataset, ensuring that the augmented data integrates
seamlessly with the original dataset. By leveraging the 3D context in a computationally ef-
ficient manner and fusing multiple view-generated images with original data, our approach
significantly improves segmentation performance. This paper details our methodology and
presents experimental results that highlight the advantages of using 3D-aware information
fusion for cardiac MRI segmentation, towards improving the segmentation accuracy even
with minimal dataset availability for training the DL networks. Major contributions and
benefits of our work are summarized as follows:

* We propose a novel 3D-aware data augmentation method that generates new slice
views from existing MRI data and fuses them with the original dataset, leveraging the
underlying 3D anatomical context to address data scarcity and variability challenges
in whole-heart segmentation.

* We introduce a method for generating corresponding ground truth labels for the newly
generated slices and fusing this augmented data with the existing dataset, ensuring
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seamless integration and maintaining accurate segmentation annotations.

* We show that our method significantly improves segmentation performance of heart
substructures, outperforming traditional augmentation techniques such as flipping, ro-
tation, and intensity adjustments for both 2D and 3D segmentation models.

* Through blind testing on other MRI data (not used in training), we illustrate that our
method demonstrates model robustness, enabling effective generalization across dif-
ferent scanners, acquisition protocols, and patient positioning effectively helping the
radiologists to save time on manual segmentation for new MRI scans.

* The proposed augmentation method can be extended to other 3D modalities such as
CT and PET, and applied to different anatomical regions (e.g., brain, liver) to improve
segmentation, classification, and overall predictive accuracy.

The rest of the paper is organized as follows. We present the details of the proposed method
in Section 2. The details of the experiments and the results are given in Section 3. Finally,
we conclude the paper in Section 4.

2 Methodology

This section presents the dataset characteristics, 3D-aware augmentation strategy, model
architectures, and training procedures employed in this work. We detail each component
to provide a complete framework for 3D-aware segmentation enhancement.

2.1 Dataset

We use the MM-WHS dataset [23] published at MICCAI 2017. The dataset consists of
20 anonymized clinical 3D MRI and 3D CT volumes of varying sizes. Each volume con-
tains manual segmentation masks for structures including the right ventricle (RV), left atrium
(LA), right atrium (RA), aorta, myocardium (Myo), and pulmonary artery (PA). The original
volumes have different dimensions due to patient-specific anatomical variations. In the orig-
inal dataset, the 3D MRI volumes consist of a total of 2,449 2D uni-directional slice images
for all the subjects. To augment the dataset, we generate 5 different volumetric views for
each patient volume, resulting in a total of 9,416 multi-directional 2D slice images. Owing
to different slice thickness values in the original slices and generated ones, the latter no. of
slices are less than the expected 5 times the former. We employ an 80-20 patient-level split
for training and validation to ensure no data leakage between sets. We apply 2D segmen-
tation techniques on each of these slices individually. To ensure repeatability, we employ
5-fold cross-validation in our experiments. Additionally, we perform blind testing on mul-
tiple datasets. These include the Sunnybrook dataset [24], which was released as part of an
LV segmentation challenge. We also perform blind testing on ACDC [1] and M&Ms [3].
These datasets contain three labels: LV, RV and Myo. We use these datasets to evaluate our
method’s ability to generalize to unseen datasets, establishing its utility in practice.

2.2 Proposed 3D Aware Multiview Data Augmentation

For every subject in the MM-WHS dataset, there is a collection of 2D slice images repre-
senting a 3-D volume stacked in a single slicing direction (as detailed in section 2.1 above).
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1.5mm inter-slice distance for
new slices /not to scale here]

Figure 2: Left: Heart volume of a subject visualized with voxels. Right: Magnified view of voxel collection.
Each voxel cube is 1x1x1mm in dimension.

It is noted that this limits the models capability to establish spatial correlations in directions
other than the pre-set slicing direction.

We propose to re-slice the existing stack of 2D slices in multiple directions to provide
new augmenting stacks, encompassing an entirely new spatial context. This is similar to
rotational augmentation of 3D volume instances for segmentation models which receive 3D
input. But, our modeling approach aims at 2D image slice as an input instead of a 3D vol-
ume. Hence, re-slicing becomes a requisite. In addition, the augmenting slicing directions
are not chosen randomly, but along certain medically relevant well-known viewing direc-
tions, as enlisted in section 1. These views together provide a coherent context of heart’s
anatomy, assisting cardiac experts in critical assessments relating to ejection fraction and
morphometry. Figure | depicts the original slices present in the dataset, followed by vol-
umes generated from image and label slices in the dataset. Also depicted are sets of parallel
re-slicing planes in grey color used to generate stacks of new slices in order to augment with
richer spatial context. Let the collective set of pixels of all the stacked 2D slices in a vol-
ume be represented as P. 3D volumes in the dataset are stored in Nifti (.nii) format, which
includes affine transformation matrix, M, along with the pixel data. Every pixel p € P
with coordinate (i, j,k) € I? is transformed to RAS (right, anterior, superior) system with
coordinate (x,,yp,zp) € IR? with respect to the physical location of the imaging machine as:

b vp oz 1 =My [i ok 1) (1)

After spatial transformation of the stacked slices, the represented 3D volume is then
converted into a voxel image volume with the same bounding area as the stack before re-
slicing for a coherent distribution of raw pixel values eliminating the effect of varied spatial
resolution in different axes. We use voxel dimension of 1 X 1 x lmm to avoid any loss of
spatial information (Fig 2 depicts individual voxels with heart volume visualized in voxel
space), given that the inter-slice and inter-pixel resolution in the dataset ranges between
Imm — 1.6mm. We use inverse distance weighing interpolation [26] technique for estimating
the value for a voxel from the pixel values in the transformed stack. Let the centroid’s
location and value of i’ voxel be x;, a;, and location and value of j"* pixel in IP be represented
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as yj,b;. Voxel value a; is then calculated as:

N
V wob
oy = Zm1 @
N
Yiiwj
1 p
here, wj = ——— d,
whnere W] (dis[(xhyj)) an

{j,j+1,j+2,...N} are the set of N pixels in P located closest to x;. For cardiac images
in the dataset, we use p =2 and N = 2 in order to capture the pixel inputs within a 1mm?3
voxel space. Similar steps are followed for the voxel label volumes, but with N = 1 to avoid
contamination of the actual label values due to multi-pixel interpolation.

The voxel volume is now sliced from five different views in contrast to the slices in
original dataset, which are present in only one of the body axes. The newly projected slices
are created at an inter-slice distance of 1.5mm as depicted in Fig 2.

In order to perform the slicing in a new direction using a slicing plane, a coordinate axes
frame, F, is calculated with respect to the slicing plane. This is executed such that one of the
basis planes of 7, (e.g. XZ) coincides with the slicing plane. Let F,, be the coordinate frame
of the volume to be sliced. Now, voxel locations of the volume are transformed from F, to
Fa. The value for every pixel in the new slice is then calculated by interpolating voxels in
the volume which are nearest to the pixel. These voxels are estimated using intersection of
the transformed volume with the chosen basis plane. The same process is carried out for the
ground truth label volumes as well, but instead of interpolating the nearby voxel values, the
value of the nearest voxel is chosen, which is critical in order to preserve the original label
values in the dataset.

2.3 Models and Training

The proposed augmentation is evaluated using DeepLabV3+ [4] with a ResNet-152 [9] back-
bone, pre-trained on ImageNet, nnU-Net [11] and earlier proposed 3D GAN [13] for sub-
structure segmentation.

2.3.1 Training of DeepLabV3+, nnU-Net and 3D GAN

For heart substructure segmentation, we employ DeepLabV3+ [4] with ResNet-152 [9] back-
bone and nnU-Net [11]. DeepLabV3+ enhances feature extraction through deep residual
learning while mitigating vanishing gradients. The encoder-decoder structure captures rich
hierarchical features while refining segmentation maps through atrous convolutions. nnU-
Net provides a self-configuring framework that automatically adapts preprocessing, network
architecture, and training procedures to dataset characteristics. Recent advances demonstrate
the potential of custom 3D GAN architectures for medical image segmentation tasks [13].
We adopt a 3D GAN framework for volumetric heart substructure segmentation.

Training utilizes cross-entropy loss for multi-class segmentation in DeepLabV3+ and
nnU-Net:

C
L£=-Y yclog(pc) (©)
c=1

where C represents class (Left Ventricle, Right Ventricle, etc.), y. denotes ground truth, and
p. indicates predicted probability for class c.
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Table 1: Results on MM-WHS [23] dataset for segmentation using three models: DeepLabV3+ with ResNet151
as the backbone, nnU-Net, and 3D GAN. The evaluation is based on the Dice Score, reported as the mean and
standard deviation from 5-fold cross-validation.

Method/Model Myo LA LV RA RV Aorta PA Average

DeepLabV3+ without Augmentation 0.855+0.019  0.771£0.071  0.845+0.036  0.888+0.067 0.920+0.033  0.887+0.016  0.886+0.025 0.865+0.016
DeepLabV3+ with Standard Augmentation ~ 0.862+0.012  0.778+£0.062  0.852+0.045  0.895+0.054  0.927+£0.025 0.895+0.021  0.894+0.032  0.873+0.063
DeepLabV3+ with Proposed A i 0.940£0.009  0.902+0.014  0.923+£0.011  0.927£0.006  0.947+£0.008 0.897+0.025 0.893+0.018 0.911+0.012
nnU-Net without Augmentation 0.845+0.044  0.930£0.012  0.905+0.018  0.875£0.036  0.755+0.057 0.853+0.090  0.865+0.073  0.861+ 0.043
nnU-Net with Standard Augmentation 0.863+£0.078  0.914£0.022  0.963£0.012  0.895£0.019  0.935£0.006 0.931£0.010  0.770£0.068  0.896+ 0.031
nnU-Net with Proposed Augmentation 0.868+0.016  0.881+0.024  0.953+0.010  0.920+0.030  0.933+0.013  0.938+0.009  0.927+0.026  0.917+0.017
3D GAN without Augmentation 0.730£0.190  0.750+0.050  0.860+ 0.320  0.820+0.130  0.840+0.090  0.870+0.110  0.790+ 0.220  0.809+ 0.160
3D GAN with Standard Augmentation 0.820+£0.230  0.800£0.140  0.850£0.070  0.770+ 0.440  0.830+0.280  0.810+£0.570  0.800£0.150  0.811x0.270
3D GAN with Proposed Augmentation 0.943+0.060  0.951£0.120  0.960+0.210  0.933£0.080  0.925+0.140  0.962+0.160  0.908+0.240  0.940+ 0.150

Table 2: Comparison of segmentation performance on the MM-WHS [23] dataset with prior methods. The table
presents Dice score results from both 2D and 3D segmentation models.

Method/Model Myo LA LV RA RV Aorta PA Average
Chunliang et al. (2D) [29] 0.807+0.059  0.847+0.061  0.895+0.057 0.821x0.087 0.795£0.102  0.679+0.180  0.743+ 0.204 0.798
Mortazi et al. (2D) [20] 0.825 0.887 0.932 0.874 0.884 0.772 0.784 0.850
Wang et al. (3D) [30] 0.744 0.852 0.863 0.840 0.849 0.824 0.788 0.832
Payer et al. (3D) [22] 0.778 0.855 0.916 0.881 0.868 0.888 0.731 0.863
Aparna et al. (3D) [12] 0.839 0.855 0.938 0.877 0.914 0.824 0.797 0.881
DeepLabV3+ with Proposed Augmentation 2D)  0.940£ 0.009  0.902+ 0.014  0.923£0.011  0.927£0.006  0.947+0.008  0.897+0.025  0.893+0.018 0.918+0.013
nnU-Net with Proposed Augmentation 0.868+0.016  0.881+0.024  0.953+0.010  0.920+0.030  0.933+0.013  0.938+0.009  0.927+0.026 0.917+0.018
3D GAN with Proposed Augmentation (3D) 0.943£0.062  0.9510.123  0.960+ 0.214  0.933+0.085 0.925+0.142  0.962+0.168  0.908+0.245  0.940% 0.148

For 3D GAN training, the discriminator loss Lp is defined as:

1
Lp = 5 [MSE(D(1,y),1) + MSE(D(1. prea).0) | )
The discriminator learns to distinguish real segmentation from generated one by assigning
scores close to 1 for real pairs and O for fake pairs. The generator loss L5 combines adver-
sarial and segmentation terms:

L= MSE(D(Ivyprcd)a 1) +a- GDL(ygtaypred) &)

The adversarial term encourages the generator to produce realistic segmentations while the
Generalized Dice Loss (GDL) [28] term ensures spatial accuracy. Here I represents input
MRI image, yg: denotes ground truth segmentation, ypreq indicates generator prediction, and
« balances adversarial and segmentation loss contributions.

3 Results and Discussion

3.1 Implementation Details

We use PyTorch for training and optimization with Adam optimizer [17]. For DeepLabV3+,
parameters include B; = 0.9, B> = 0.999, learning rate 2 x 10~#. We train it for 300 epochs
with batch size 16. For nnU-Net, we use f; = 0.9, B, = 0.999, learning rate 3 x 1074, We
train it for 200 epochs with batch size 8. The 3D-GAN uses learning rate 2 x 10~ with
Bi1 =0.9, B, =0.999, and o = 4. We take batch size 8 and train it for 400 epochs. A dropout
rate of 0.4 mitigates mode collapse risk. All models undergo five-fold cross-validation with
training on NVIDIA V100 GPU. Each subset serves once for testing with training performed
on the remaining four subsets.
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With Standard With Proposed
Original Image GT Mask Without Aug Aug Aug

Figure 3: Comparison of Ground Truth and Predicted Masks for MM-WHS [23] Dataset from two models:
DeepLabV3+ (First row), nnU-Net (2nd Row) and 3D GAN (3rd row). The first column shows the original image,
the second column displays the ground truth (GT) mask, the third column presents the predicted mask without
augmentation, the fourth column shows the predicted mask with standard augmentation, and the fifth column shows
the predicted mask using the proposed augmentation method.

3.2 Performance Evaluation

To show the impact of our proposed data augmentation, we compare performance of the
three DL models with three different input data modalities: 1) no augmentation, 2) standard
augmentation and 3) proposed augmentation.

3.2.1 Comparison with Standard Augmentation

Standard augmentation techniques include random horizontal and vertical flips (50% proba-
bility), rotations (£30°), and brightness adjustments (scaling factors 0.8-1.2). Performance
is evaluated using Dice score which quantifies overlap between predicted segmentation and
ground truth. Table | presents the results. DeepLabV3+ with standard augmentation mod-
estly improves the average Dice score from 0.865 to 0.873 when compared with no augmen-
tation. Proposed augmentation yields significantly higher performance with DeepLabV3+
achieving an average Dice score of 0.911. nnU-Net shows improvement in average Dice
score from 0.861 without augmentation to 0.896 with standard augmentation and reaches
0.917 with proposed augmentation. 3D GAN experiences performance variation with stan-
dard augmentation (0.811 compared to 0.809 baseline). However, proposed augmentation
yields substantially higher scores with 3D GAN achieving an average Dice score of 0.940.
Table 1 clearly shows the impact of our proposed clinically relevant augmentation with a
good improvement in the average Dice score. The new augmentation scheme helped in bet-
ter generalization of the model owing to better captured spatial context in the data than the
normally used standard augmentation.

3.2.2 Comparison with Prior Methods on MM-WHS

We compare our segmentation performance with proposed augmentation against state-of-
the-art approaches on the MM-WHS dataset [23]. Table 2 presents Dice scores for cardiac
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Table 3: Cross-dataset generalization performance: Models trained on MM-WHS [23] and tested on multiple
datasets.

Method/Model Sunnybrook ACDC M&M

LV RV Myo Avg \ LV RV Myo Avg \ LV RV Myo Avg
DeepLabV3+ w/o Aug 0387 - - 0.387 | 0.631 0.436 0.223 0.430 | 0.250 0.230 0.083 0.187
DeepLabV3+ w/ Std Aug 0472 - - 0472 | 0.763 0.625 0.678 0.689 | 0.428 0.409 0.285 0.374
DeepLabV3+ w/ Prop Aug 0.806 - - 0.806 | 0.891 0.751 0.702 0.781 | 0.667 0.529 0.583 0.593
nnU-Net w/o Aug 0.614 - - 0.614 | 0.553 0.327 0.486 0.455 | 0.442 0.205 0.053 0.233
nnU-Net w/ Std Aug 0.773 - - 0.773 | 0.752 0.608 0.665 0.675 | 0.516 0.354 0.283 0.384
nnU-Net w/ Prop Aug 0.885 - - 0.885 | 0.843 0.576 0.754 0.724 | 0.725 0.573 0.457 0.585
3D GAN w/o Aug 0574 - - 0.574 | 0.546 0.094 0.305 0.315 | 0.527 0.083 0.224 0.278
3D GAN w/ Std Aug 0.706 - - 0.706 | 0.715 0.446 0.623 0.595 | 0.634 0.285 0.353 0.424
3D GAN w/ Prop Aug 0.836 - - 0.836 | 0.784 0.587 0.653 0.675 | 0.763 0.556 0.496 0.605

structures across 2D and 3D segmentation models. Our approach enhances overall perfor-
mance while improving class-wise accuracy, particularly for left and right ventricles. 3D
GAN with proposed augmentation achieves the highest overall Dice score of 0.940. nnU-
Net with proposed augmentation reaches an average Dice score of 0.920. DeepLabV3+ with
proposed augmentation attains an average Dice score of 0.911. All three methods outperform
existing state-of-the-art approaches significantly. Proposed augmentation reduces inter-class
variability, ensuring uniform segmentation quality across cardiac structures. Prior methods
show higher inter-class variability and yield less consistent outcomes. A more homogeneous
performance from our approach indicates superior robustness in capturing anatomical vari-
ations. Our models maintain low class-wise variability, reinforcing consistent anatomical
detail capture. This consistency is critical for reliable diagnosis and treatment planning.

3.2.3 Performance in Blind Testing

Blind testing evaluates cross-dataset generalization on Sunnybrook [24], ACDC [1], and
M&M [3] datasets. Models are trained on MM-WHS dataset [23] containing only 20 vol-
umes. Since Sunnybrook contains 2D data, we stack the slices to create 3D volumes for 3D
GAN evaluation. The M&M dataset presents particularly challenging segmentation scenar-
ios due to data acquisition from different scanners and imaging protocols. Table 3 presents
comprehensive results comparing standard against proposed augmentation approaches across
three methods and three testing datasets. On the Sunnybrook dataset, our approach demon-
strates substantial improvements over standard augmentation. DeepLabV3+ achieves an av-
erage Dice score of 0.806 versus 0.472 (70.8% improvement). nnU-Net reaches 0.885 com-
pared to 0.773 (14.5% improvement). 3D GAN attains 0.836 versus 0.706 (18.4% improve-
ment). ACDC dataset results demonstrate significant performance gains with our method.
DeepLabV3+ average Dice improves from 0.689 to 0.781 (13.3% improvement). nnU-Net
advances from 0.675 to 0.724 (7.3% improvement). 3D GAN increases from 0.595 to 0.675
(13.4% improvement). The M&M dataset also shows notable enhancements. DeepLabV3+
average Dice rises from 0.374 to 0.593 (58.6% improvement). nnU-Net improves from 0.384
to 0.585 (52.3% improvement). 3D GAN advances from 0.424 to 0.605 (42.7% improve-
ment).These substantial improvements achieved using only 20 training volumes highlight the
effectiveness of our proposed augmentation approach compared to standard augmentation
techniques. The approach reduces radiologists’ manual segmentation time and streamlines
clinical workflows.
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4 Conclusion and Future Work

This paper introduced novel 3D-aware data augmentation enhancing heart substructure seg-
mentation from MRI scans. Generating additional slice views from existing 3D data im-
proved training datasets and captured vital anatomical context. Experimental results demon-
strated out performance over standard augmentation techniques, yielding more accurate seg-
mentation and reducing radiologists’ manual correction time. The multi-view augmentation
technique can be adapted readily to other 3D imaging modalities (CT, PET) and anatomi-
cal regions (brain, liver) to enhance segmentation, classification, and related tasks. Future
work explores integration with various deep learning architectures and application to differ-
ent medical imaging modalities. Development of user-friendly clinical tools aims to further
improve diagnostic accuracy and cardiovascular healthcare outcomes.
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