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Abstract

Zero-shot instance segmentation of novel objects in RGB-D images is a well-known
problem in computer vision and significant for many different applications, especially
ones in which accurate identification of unseen objects without long retraining is required.
In this work we propose Depth-NOCTIS (D-NOCTIS), a unified RGB-D segmentation
method that seamlessly integrates depth information to enhance matching accuracy. This
pipeline is based upon NOCTIS, leveraging Grounded-SAM 2 for object proposals with
precise bounding boxes and corresponding segmentation masks; and DINOv2’s zero-
shot capabilities for robust cls (semantic) and patch (appearance) embeddings, while
introducing a geometric consistency score. By using RGB-D images instead of RGB-only
ones, like NOCTIS, this new score is able to better handle objects that are similar in
appearance but differ in size and shape. We empirically show that Depth-NOCTIS through
the fusion of RGB and depth based similarity scores, without further training/fine tuning,
achieves substantial performance gains, in terms of mean absolute Average Precision
(AP); over the best RGB and RGB-D methods on the seven core datasets of the BOP 2023
challenge for the “Model-based 2D segmentation of unseen objects” task.

1 Introduction and related work

The instance segmentation task, in which object instances are identified and located in images
via segmentation masks, proves to be a crucial issue in robotics’ perception and augmented
reality applications, especially when zero-shot adaptability to novel objects without (further)
training is required; e.g. a robot wants to identify a specific object instance on a conveyor belt.
Historically, classical supervised learning frameworks have exhibited strong performances
when target objects are fixed [10, 19, 23, 33, 38], yet their reliance on extensive training and
labeled data limits deployment in dynamic and/or industrial environments, where the target
objects change constantly.

Large-scale pretrained models have revolutionized zero-shot generalization. Vision trans-
formers (e.g., ViT [5]), contrastive learners (CLIP [31]), and self-supervised backbones
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Figure 1: The three D-NOCTIS stages: onboarding stage, represents each object via descrip-
tors from templates and sample points (Section 2.1); proposal stage (Section 2.2), where
proposals as masks, and their descriptors, are generated from the query RGB-D image; lastly,
in the matching stage, object labels and confidences are assigned to each proposal based on
their descriptors (Section 2.3).

(DINOV2 [3, 29]) produce high-quality embeddings that generalize across tasks, i.e. classi-
fication, semantic segmentation, depth estimation, and novel instance retrieval. DINOvV2 is
used in this work due to its robustness against unseen object appearances.

Furthermore, visual foundation models such as Segment Anything (SAM) [17] and its varia-
tions/successors FastSAM [45], SAM 2 [32] and others [42, 44] prevail in image segmentation
mask generation via enabling open world/class-agnostic scenarios. In recent times, a standard
practice is to combine, in a modular way, the strengths of open-set detectors [15, 21, 24, 34]
with SAM variants to solve complex problems; here, we employ Grounded-SAM 2 [35] for
its efficiency and avoidance of spurious or fragmented proposals.

As already mentioned, classical instance segmentation methods, like Mask R-CNN [10] or
similar [23, 33, 38], which demonstrated to be robust in challenging scenarios with heavy
occlusions and lighting conditions, always needed to be fine-tuned on specific target ob-
jects [13]; making them unable to handle novel objects without retraining. ZeroPose [2] and
CNOS [27] were among the first notable models that solved, in a training-free fashion, this
task. The core architecture of the latter has also laid the foundation for subsequent models
such as SAM-6D [22], NIDS-Net [25] and notably NOCTIS [8]; which combines semantic
(cls tokens), appearance (patch tokens) and mask confidence scores; augmented by a cyclic
patch filtering, to match query proposals against multi-view RGB templates.

The proposed pipeline, Depth-NOCTIS (D-NOCTIS), is an extension of NOCTIS that incor-
porates a newly defined geometric score using depth information into the object matching
one, which is useful whenever one has to differentiate between “similar looking” objects with
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different sizes or shapes, like e.g. texture-less but differently sized industrial objects.

In our evaluation on the seven core BOP 2023 benchmarks [13] for the “2D instance segmen-
tation of unseen objects” task, D-NOCTIS achieves, without further training, in terms of mean
absolute Average Precision (AP) metric, a 1.1% improvement over the best models (NOCTIS
and MUSE); moreover, it outperforms the leading RGB-D zero-shot method (LDSeg) by
1.9%. The main contributions of our work can be summarized as follows:

1. We propose Depth-NOCTIS, a zero-shot framework for novel objects instance seg-
mentation that uses vision foundation models and depth information to outperform the
current state-of-the-art methods.

2. The introduction of a geometric consistency score exploiting depth for handling similar
looking objects with different sizes/shapes.

3. Ablation study is conducted over several object matching score components, demon-
strating significant performance gains when using the geometric score.

2 Method

In this section, we explain our approach for performing the instance segmentation, i.e.
generating segmentation masks and labeling them, for all novel objects within an RGB-D
query image I € R*>*W>H with W and H being the width and height in pixels, respectively,
and 3 RGB + depth channels; given a set of RGB template images and 3D model sample
points of said objects and without any (re-)training.

Our approach, as shown in Figure 1, is carried out in three steps, similarly to [8, 22, 25, 27].
Starting with the onboarding stage in Section 2.1, visual descriptors are extracted from the
template images via DINOv2; followed by the proposal stage in Section 2.2, where all possible
segmentation masks and their descriptors, from the query RGB-D image, are generated with
Grounded-SAM 2 and DINOvV2, respectively. Lastly, in Section 2.3, the matching stage, each
proposed mask is given an object label and a confidence value, based on the determined object
scores using the visual descriptors.

2.1 Onboarding stage

Multiple visual descriptors are generated during the onboarding stage to represent each of the
NP different novel objects O. In the following, in all the descriptions and notations, we will
consider just one object O € O; this is done to keep the notation simple.

In detail, the object is represented by: N**"P'¢ sample points from its 3D/CAD model; a set
of T template images; and their corresponding ground truth segmentation masks, showing
the object from different predefined viewpoints. These templates and masks can either be
pre-rendered with renderers like Pyrender [26] or BlenderProc [4] using the 3D model of
the object and some fixed viewpoints, or even be extracted out of some selected frames,
e.g. annotated videos, where the object is “visible enough” and has a viewpoint close to a
predefined one.

In a preprocessing step, the segmentation masks are used to remove the background and to
crop the object instance in each template, then, the crop size is unified via resizing and padding.
Afterwards, the instance crops are fed into DINOv2, an image foundation network, creating a
class embedding/cls token and N7 patch embeddings/patch tokens for each template T in 7T,
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where N7 denotes the number of not masked out patches within the cropped template mask
(N7 < NPaichy The cropped templates are internally divided into NP4“" = 256 patches, on
a 16 x 16 grid, for the patch tokens. The cls token and patch tokens, together, form the visual
descriptor of each template.

2.2 Proposal stage

At this stage, all object proposals from the query image I are acquired. We decided to use
Grounded-SAM 2 as proposal generator, since it was shown by the NOCTIS authors’s [8] to
work better than the original Grounded-SAM [35], SAM or FastSAM; which were used by
previous works [2, 20, 22, 25, 27, 37]. Grounded-SAM 2 obtains the bounding boxes of all
objects from Grounding-DINO [24], a pretrained zero-shot detector, matching a given text
prompt; then, it uses these as a prompt for SAM 2 to create segmentation masks.
Accordingly, Grounded-SAM 2 with the text prompt “objects” is applied on the RGB part
of the query image to extract all N* foreground object proposals P; note that N changes
according to /. Furthermore, each proposal p € P includes a bounding box, a corresponding
segmentation mask and a confidence score for both of them. In next step, each proposal with
a confidence score lower than a threshold value, or too small relative to the image size, is
filtered out. Eventually, the visual descriptor of each proposal p is created using the pipeline
from the previous section, where the preprocessing step creates the image crop /,, which is
then used by DINOV?2 to generate the cls token and patch tokens.

2.3 Matching stage

During the matching stage, we determine the matching score for the considered proposal-
object pair using the previously gathered descriptors; then, the object label that best suits the
proposal is assigned together with its confidence score.

The object matching score s°%, between a proposal p and an object O, represented by its
templates and 3D sample points, is the combination of: a semantic score; an appearance score;
a proposal confidence; and a newly introduced geometric score, to consider the size of the
object.

In the following, a quick overview of the different scores already used/defined in NOCTIS is
given. After that, a comprehensive explanation of our new geometric score is provided.

Semantic score The semantic score s*¢”* was established as a robust measure of semantic

matching in CNOS and is based on the cosine similarity:

b
cossim(a,b) = m, (D

with (,) denoting the inner product. The score, is then computed for each proposal as the
top-5 average across the cosine similarity values between its cls token and all object templates
ones.

Appearance score with cyclic threshold The appearance score s7¢ introduced in NOCTIS,
is employed to discriminate between objects which are semantically similar, but with different
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. . app
patch/part-wise appearance. For each proposal-template pair, a sub-appearance score sy is

computed as follows:

crop

a”pe = Cmp 1 . cossim(gi,fj)) -)((cdist(lp,T7 i) < SCT), )
i= lj 2ty T

where g; and f; are, respectively, the corresponding i-th/j-th patch token for the image
proposal crop /, and the template 7. The function y is the indicator function, turning the
boolean values True and False to 1 and 0, respectively. Finally, the appearance score, for each
proposal is obtained as the maximum sub-appearance score across all object templates.

To increase the quality of the patch-pairs, NOCTIS introduced a patch-pair filtering using
patch-wise cyclic distance, here cdist, since DINOv2 descriptors can assign similar patch
embeddings/tokens to repetitive textures/similar looking parts (e.g. identical corners or
surfaces), leading to many-to-one matches. To filter out some of these unstable matches, a
“relaxed” mutual similarity is enforced; thus, only patches whose cyclic distance is smaller
then the threshold value §c7 = 5 survive.

Bounding box and segmentation mask confidence Proposals might contain a high number
of false positives, indeed, background regions and object parts might be misinterpreted as
complete objects. To account for this, for each proposal p, the proposal confidence conf ,, as
the average confidence value of its bounding box and segmentation mask, is included as a
weighting factor for the object matching score.

Geometric score While the previously mentioned scores are already good at handling
visual different looking objects, they have problems with differentiating similar looking but
differently sized/shaped ones. The introduction of a geometric score, as the one used by
SAM-6D, addresses this problem and increases the performance in the area of texture-less
but differently sized industrial objects. Following NOCTIS’ approach of un-biasing the
appearance score, we evaluate the geometric score in a similar fashion by computing it for all
templates per object and aggregating results; rather than relying on a single template of the
single object with the highest semantic score. Thus, we first define the sub-geometric score
537 for each proposal p with template 7 € T as the Intersection-over-Union (IoU or Jaccard
index) of the proposal bounding box 3, and the template based one By ;:

s“’}e” = rna ('B p (1 B > 3)

|B

To get By, first, a coarse pose estimation of the object is obtained by combining the ob-
ject rotation of the template pose/viewpoint with a translation given by the centroid of the
reprojected points using the proposal depth image and the camera intrinsic. Afterwards the
pose is used to transform the 3D sample points/point cloud of the 3D object mesh, which
are then projected onto the image plane, 2D/in-plane rotated and their min/max values are
used to create the (axis aligned) bounding box Br;. Where the index i determines which
of the different possible N 2D/in-plane rotations is used. The IoU can be increased by
adding these in-plane rotations to compensate for the lack of them in the basic viewpoints
(see ablation studies 3.3), which limited SAM-6D authors’ approach as they relied only on
the viewpoint rotations.

As this score is heavily affected by the objects’ visibility/occlusion, a weighting factor that
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penalizes for scarce visibility has been adopted. Then, we define the sub-visibility visr as
follows:

crop

1N
VisT = NP Z X( . max_ (cossim(g,-,fj)) > 5v,~s). %)
T im J=Le N

LNy

The value J,; is a threshold value needed to control the needed minimum visibility of an
image patch/part.

Finally, the geometric score s5°°, i.e. the best s‘;w -vist value across all templates, and its
corresponding visual score vis are returned.

Object matching score By combining all these scores and the proposal confidence, we
determine the object matching score sf,bj for each proposal p as follows:

sem . appe 8eo
obj:SP +2-55 0 +5p

P 14 1+4vis,

-conf,. ®))

The object matching scores of all the N” proposals, over all possible N objects, are stored in
the N¥ x N© instance score matrix.

Object label assignment In the final stage, we apply the Argmax function across the
objects/rows of the instance score matrix. The object label and its matching score are assigned
to each proposal, indicating its corresponding confidence. Eventually, we obtain proposals
consisting of: a bounding box of the object instance; its corresponding modal segmentation
mask, which encompasses the visible instance part [13]; and an object label with a confidence
score. To remove any proposals that may be incorrectly labeled, a confidence threshold Jco,s
filtering is applied with O.,ns = 0.2 as the default value for testing. Moreover, Non-Maximum
Suppression is applied to eliminate redundant proposals.

3 Experiments

We begin by presenting our experimental setup (Section 3.1) and then compare it to the state-of-
the-art ones for the seven core datasets of the BOP 2023 challenge [13] (Section 3.2). Finally,
we perform a short ablation study regarding the score component choices in Section 3.3.

3.1 Experimental setup

Datasets We evaluate our method on the seven core datasets of the BOP 2023 challenge:
LineMod Occlusion (LM-O) [1]; T-LESS [14]; TUD-L [12]; IC-BIN [6]; ITODD [7]; Home-
brewedDB (HB) [16]; and YCB-Video (YCB-V) [43]. These datasets contain 132 household
and industrial objects, which might be textured or not, and symmetric or asymmetric. Fur-
thermore, they are shown in multiple cluttered scenes with varying occlusion and lighting
conditions.
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Evaluation metric The BOP 2023 challenge’s standard protocol [13, Section 2.6] is fol-
lowed to evaluate the “2D instance segmentation of unseen objects” task, thus we use the
Average Precision (AP) as our criterion. The AP metric is computed as the average of
precision scores, at different IoU thresholds, in the interval from 0.5 to 0.95 with steps of
0.05.

Implementation details To generate the proposals, we use Grounded-SAM 2, with an input
text prompt “objects”, comprised of the Grounding-DINO model with checkpoint “Swin-
B” and SAM 2 with checkpoint “sam2.1-L”. The corresponding regions of interest (ROIs)
are resized to 224 x 224, while using padding to keep the original size ratios. We use the
default “ViT-L” model/checkpoint of DINOv2, following the approaches in [8, 22, 25, 27],
for extracting the visual descriptors as 1024-dimensional feature vectors, where each patch
token on the 16 x 16 grid represents 14 x 14 pixels.

We use the “PBR-BlenderProc4BOP” pipeline with the same 42 predefined viewpoints, as
described in CNOS [27, Sections 3.1 and 4.1], to select the templates representing every
dataset object, because they perform better than the other choices (see the ablation studies of
other works [8, 22, 25, 27]). For the 2D rotation N'' = 8 equal distributed ones are used and
the minimum visibility threshold is set to &,;; = 0.35.

The main code is implemented in Python 3.8 using Numpy [9] and PyTorch[30] (Version
2.2.1 CUDA 11.8). To ensure reproducibility, the seed values of all the (pseudo-) random
number generators are set to 2025. The tests were performed on a single Nvidia RTX 4070
12GB graphics card and the average measured time per run, with one run using the same
configuration on all the seven datasets, was approximately 130 minutes or 1.324 seconds per
image on average.

3.2 Comparison with the state of the art

We compare our method with the best available results from the leaderboard' of the BOP
challenges, comprising of the top-4 disclosed methods: CNOS [27], SAM-6D [22], NIDS-
Net [25] and NOCTIS [8]; and the overall top-3 undisclosed ones: “anonymity”, LDSeg and
MUSE. CNOS uses proposals from SAM or FastSAM and only the semantic score 2.3 for
matching. SAM-6D uses the same proposals and semantic score as CNOS, additionally, it also
uses simpler versions of the appearance score 2.3 and the geometric one 2.3. NIDS-Net uses
proposals from Grounded-SAM and the cosine similarity between the weight adapter refined
Foreground Feature Averaging [18] embeddings together with SAM-6D’s appearance score.
NOCTIS is the model on top of which D-NOCTIS is based; the main difference between the
two is that the latter employs depth data for computing a geometric score.

In the Table 1 we show the results for D-NOCTIS and the other methods on all seven datasets
and their overall average. We surpass the best established method NIDS-Net by a significant
margin, in terms of absolute mean AP, of 4.5% and the best ones (MUSE and NOCTIS)
by 1.1%. This comparison clearly shows that fusing depth information with the previous
RGB-only pipeline leads to a significant increase over the top performing methodologies.
Indeed, while it might look negligible at a first glance, it is actually a significant one; given
the nature of the BOP task, being able to improve upon the mean AP score proves to be
quite difficult as one methodology might score better on certain datasets and worse on others
(given their dissimilarity); leading to minimal gains in performance in most cases. This is

Thttps://bop.felk.cvut.cz/leaderboards/segmentation-unseen-bop23/bop-classic-core/; Accessed: 2025-08-14
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BOP Datasets
Method Depth LMO TLESS TUDL ICBIN ITODD HB YCBV Mean
CNOS - 0.397 0.374 0480 0.270 0.254 0.511 0.599 0.412
SAM-6D v 0.460 0.451 0.569  0.357 0.332 0.593 0.605 0.481
NIDS-Net - 0.439 0.496 0.556  0.328 0.315 0.620 0.650 0.486
LDSeg v 0.478 0.488 0.587 0.389 0.370 0.622 0.647 0.512
anonymity - 0.471 0.464 0.569 0.386  0.376 0.628 0.688 0.512
MUSE - 0.476 0.486 0.550  0.408 0.382 0.636 0.702 0.520
NOCTIS - 0.489 0.479 0.583  0.406  0.389 0.607 0.684 0.520
D-NOCTIS Vv 0.499 0.517 0.542  0.421 0.432 0.614 0.692 0.531

Table 1: Comparison of D-NOCTIS (ours) against different methods on the seven core
datasets of the BOP 2023 challenge [13], w.r.t. the AP metric (higher is better). For each
dataset, the best result is displayed in bold and the second best is underlined.

s8¢ 2D Rot vis Mean

0 v v v 0.531
1 - - - 0.520
2 Vv - - 0.525
3 Vv - v 0529
4 v v - 0.527

Table 2: Ablation studies on the influence of different components on the mean AP metric.

further supported by the fact that the top 4 models, excluding D-NOCTIS, exhibit a mere
0.8% absolute discrepancy in mean AP.

Figure 2 shows some qualitative segmentation results of our method compared to the pub-
licly available ones, with red arrows indicating any errors in the masks and/or proposals
classifications. It is evident that each method has its own strengths and weaknesses. Using
SAM/FastSAM as a proposal generator, like SAM-6D does, one has difficulties in distin-
guishing between objects and some of their parts. While NIDS-Net, due to its usage of
Grounded-SAM, is more robust, it can still misclassify by labeling scene objects wrongly or
by creating oversized bounding boxes around identified objects, leading to multiple detections.
NOCTIS suffers less, on average, from said problems; but it can still misclassify objects that
are too similar looking or too close to each other; see columns 1 (left clamp), 4 (lamp holder)
and 6 (cylinder hull) for reference. D-NOCTIS with the help of geometric information can
avoid some of the previous issues, for some cases, as seen in the YCB-V image; indeed, the
large clamp is correctly labeled despite looking very similar to the small one; furthermore,
one is able to discriminate objects in industrial (textureless) scenarios, like in the TLESS and
ITODD cases. On average, D-NOCTIS shows fewer errors overall than the other methods.

3.3 Ablation studies

In Table 2, we show the influence of the geometric score, the visualization one and the in-
plane (2D rotation) on the mean AP metric. Line O shows the result attained by the complete
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2

YCB-V YCB-V T-LESS T-LESS ITODD ITODD

< ect 1

SAM6D

D-NOCTIS NOCTIS NIDS-Net

Figure 2: Qualitative assessment of some segmentation results using SAM-6D, NIDS-Net,
NOCTIS and D-NOCTIS on YCB-V, T-LESS and ITODD. The image addresses the strengths
and limitations of these methods. The red arrows indicate errors in the segmentation masks
and/or classifications of the proposals. For better visualization purposes, &..,r = 0.5 was
used.

D-NOCTIS model as shown in Table 1 and line 1 shows the original NOCTIS result (no
geometric component, pure RGB). The comparison between the two clearly shows that there
is a significant increase of 1.1% in absolute mean AP through including the depth information.
This increase is built steadily by adding one by one the three components, as shown by lines 2,
3 and 0 in Table 2. The highest incremental gain in performance is obtained when one adopts
58¢° as shown by line 2; however, the other two increments are still significant 0.4% for the vis
score and 0.2% for the added in-plane rotation. However, without the geometric components,
the other two can not be employed as stated in Section 2.3; thus their total contribution can
not be evaluated standalone.

3.4 Discussion and limitations

A limiting factor of our geometric score is most likely the use of a bounding box-based
IoU instead of a more detailed one, e.g., between segmentation masks. While the choice of
extracting a bounding box from the projected rotated image plane points was due to its ease
of implementation (proof of concept), as one just needs to search the min/max values for
the xy-coordinates, future work could improve upon this (and with that also on the influence
of the 2D rotation) by creating segmentation masks based on convex hulls or alpha-shapes
approaches.

Due to a lack of other results for the BOP classic Extra datasets (LM [11]; HOPEv1 [41];
RU-APC [36]; IC-MI [39] and TYO-L [12]), our method is only evaluated on the seven
core BOP 2023 datasets; moreover, the BOP 2024 [28] and 2025 [40] challenges are solely
focused on a detection task. But, as mentioned in Section 3.1, the chosen datasets include
many different scenes, so their evaluation should still be reliable.
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Method Depth Mean AP Time
SAM-6D (FastSAM) - 0.428 0.249
SAM-6D (FastSAM) v 0.449 0.445
SAM-6D - 0.450 2.281
SAM-6D v 0.481 2.795
NOCTIS - 0.520 0.990
D-NOCTIS (w/o 2D Rot) v 0.529 1.054
D-NOCTIS v 0.531 1.324

Table 3: Mean AP and time per image comparison between different versions of SAM-6D
and NOCTIS (with and without depth).

In Table 3, we show a comparison of the time per image needed by different versions of
SAM-6D and NOCTIS (in seconds). As it can be noticed, the inclusion of depth information
increases the overall mean AP score at the expense of a higher processing time. Furthermore,
the D-NOCTIS configuration without the additional in-plane rotation (similar to Table 3.3 row
3) seems to have the best balance between the increases in time (6%) and w.r.t. absolute mean
AP (0.9%) compared to NOCTIS; making it the preferred model of choice for more time-
sensitive scenarios. We also want to note that, while time is usually an important factor for
real-world applications, it is not an evaluation criterion for the BOP task. As each participant
can use their own hardware for evaluation, e.g. “GeForce RTX 3090 24GB” (SAM-6D),
“V100 16GB” (CNOS) or “Nvidia RTX 4070 12GB” (ours), this heavily influences the runtime
(“normal” graphic cards vs. server ones), making a direct comparison of the time per image
(almost) meaningless.

4 Conclusion

In this paper we presented Depth-NOCTIS, a new framework for zero-shot novel object
instance segmentation; which builds upon NOCTIS to increase its performances by adopting
a depth-based geometric score for object sizes/shapes. As shown by the experimental results,
our method performed better than all other methodologies, in terms of mean absolute AP
score, on the seven core datasets of the BOP 2023 benchmark.
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